All Title Author
Keywords Abstract


Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities—Metabiotics: Probiotics Effector Molecules

DOI: 10.4236/abb.2018.94012, PP. 147-189

Keywords: Metabiotics, Probiotics, Metabolic Signatures, Gut Microbiome, Homeostasis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The intricate “orchestered molecular conversation” between the host and gut microbiome is one of the most dynamic research areas in recent years. The rhythmic chemical cross talk in the form of bioactive metabolites and signalling molecules synthesized by gut microbiome plays a significant role for the modulation of human health in diversified ways. They are recognized as low molecular weight (LMW) molecules having versatile chemical attributes. They possess magnificent capability of interacting with surrounding environment and controlling the genes for various genetic, biochemical and physiological functions for maintaining the homeostasis that is now-a-days termed as “small molecules microbes originated (SMOM) homeostasis” in the host. These metabolic signatures have close structural and functional resemblance with small molecules synthesized by host eukaryotic cells and dietary components. Therefore, they may be considered as universalized metabolites contributing to the remarkable phenomenon of epigenetic regulation, cell to cell communication and stability of genome manifesting the overall growth and development of the host and known as “metabiotics”. The wide panorama of utilization of probiotics is continuously expanding and conferring the major health benefits through metabiotic components are gaining tremendous momentum therefore recognized as “hidden soldiers” of the body. Therefore firstly, we outline the need and types of metabiotic molecules and depicting their role in human health. Then, we summarize their preventive and therapeutic avenues in various diseases and finally, we propose the current technological interventions, bottlenecks and future perspectives in this field that are implied for accelerating their comprehensive understanding and utilization at industrial scale.

References

[1]  Hopper, L.V. and Gordon, J.I. (2001) Commensal Host-Bacterial Relationships in the Gut. Science, 292, 1115-1118.
https://doi.org/10.1126/science.1058709
[2]  Sommer, F. and Backhed, F. (2013) The Gut Microbiota-Masters of Host Development and Physiology. Nature Reviews Microbiology, 11, 227-238.
https://doi.org/10.1038/nrmicro2974
[3]  Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I. and Knight, R. (2009) Bacterial Community Variation in Human Body Habitats across Space and Time. Science, 326, 1694-1697.
https://doi.org/10.1126/science.1177486
[4]  Bik, E.M., Long, C.D., Armitage, G.C., Loomer, P., Emerson, J., Mongodin, E.F., Nelson, K.E., Gill, S.R., Fraser-Liggett, C.M. and Relman, D.A. (2010) Bacterial Diversity in the Oral Cavity of 10 Healthy Individuals. ISME Journal, 4, 962-974.
https://doi.org/10.1038/ismej.2010.30
[5]  Kim, T.K., Thomas, S.M., Ho, M., Sharma, S., Reich, C.I., Frank, J.A., Yeater, K.M., Biggs, D.R., Nakamura, N., Stumpf, R., et al. (2009) Heterogeneity of Vaginal Microbial Communities within Individuals. Journal of Clinical Microbiology, 47, 1181-1189.
https://doi.org/10.1128/JCM.00854-08
[6]  Pel, Z., Bini, E.J., Yang, L., Zhou, M., Francois, F. and Blaser, M.J. (2004) Bacterial Biota in the Human Distal Esophagus. Proceedings of the National Academy of Sciences of the United States of America, 101, 4250-4255.
https://doi.org/10.1073/pnas.0306398101
[7]  Price, L.B., Liu, C.M., Johnson, K.E., Aziz M., Lau, M.K., Bowers, J., Ravel, J., Keim, P.S., Serwadda, D., Wawer, M.J. and Gray, R.H. (2010) The Effects of Circumcision on the Penis Microbiome. PLoS ONE, 5, e8422.
https://doi.org/10.1371/journal.pone.0008422
[8]  Leebeer, S., Vanderleyden, J. and De Keersmaecker, S.C. (2008) Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews, 72, 728-764.
https://doi.org/10.1128/MMBR.00017-08
[9]  Singhal, B., Mukherjee, A. and Srivastav, S. (2016) Role of Probiotics in Pancreatic Cancer Prevention: The Prospects and Challenges. Advances in Bioscience and Biotechnology, 7, 468-500.
https://doi.org/10.4236/abb.2016.711045
[10]  Shenderov, B.A. (2013) Metabiotics: Novel Idea or Natural Development of Probiotic Conception. Microbial Ecology in Health and Disease, 24, 20399.
https://doi.org/10.3402/mehd.v24i0.20399
[11]  Shenderov, B.A. (2011) Probiotic (Symbiotic) Bacterial Languages. Anaerobe, 17, 490-495.
https://doi.org/10.1016/j.anaerobe.2011.05.009
[12]  Sonnenbur, J.L. and Fischbach, M.A. (2011) Community Health Care: Therapeutic Opportunities in the Human Microbiome. Science Translational Medicine, 3, 12.
[13]  Neish, A.S. (2009) Microbes in Gastrointestinal Health and Disease. Gastroeneterology, 136, 65-80.
https://doi.org/10.1053/j.gastro.2008.10.080
[14]  Indriyani, A., Juffrie, M. and Setyati, A. (2012) Effects of Live versus Heat-Killed Probiotics on Acute Diarrhea in Young Children. Paediatr Indones, 52, 249-254.
https://doi.org/10.14238/pi52.5.2012.249-54
[15]  Caselli, M., Vaira, G., Girolamo, C., Papini, F., Holton, J. and Vaira, D. (2011) Structural Bacterial Molecules as Potential Candidates for an Evolution of the Classical Concept of Probiotics. Advances in Nutrition, 2, 372-376.
https://doi.org/10.3945/an.111.000604
[16]  Shenderov, B.A. and Gabrichevsky, G.N. (2017) Metabiotics: Overview of Progress, Opportunities and Challenges. Journal of Microbial & Biochemical Technology, 9, 11-21.
[17]  Paul, B., Barnes, S., Demark-Wahnefried, W., Morrow, C., Salvador, C., Skibola, C. and Tollefsbol, T.O. (2015) Influences of Diet and the Gut Microbiome on Epigenetic Modulation in Cancer and Other Disease. Clinical Epigenetics, 7, 1-11.
[18]  Shenderov, B.A. (2012) Gut Indigeneous Microbiota and Epigenetics. Microbial Ecology in Health and Disease, 23, 17195.
https://doi.org/10.3402/mehd.v23i0.17195
[19]  Sheflin, A.M., Whitney, A.K. and Weir, T.L. (2014) Cancer-Promoting Effects of Microbial Dysbiosis. Current Oncology Reports, 16, 406.
https://doi.org/10.1007/s11912-014-0406-0
[20]  Roberfroid, M., Gibson, G.R., Hoyles, L., McCartney A.L., Rastall, R., Rowland, I., Wolvers, D., Watzi, B., Szajewska, H., Stahl, B., et al. (2010) Prebiotic Concept and Health. British Journal of Nutrition, 2, S1-63.
https://doi.org/10.1017/S0007114510003363
[21]  Tomar, S.K., Anand, S., Sharma, P., Sangwan, V. and Mandal, S. (2015) Role of Probiotics, Prebiotics, Synbiotics and Postbiotics in Inhibition of Pathogens. Formatex, 717-732.
[22]  Besten, G.D., Eunen, K.V., Groen, A.K., Venema, K., Reijngoud, D.J. and Bakker, B.M. (2013) The Role of Short Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. The Journal of Lipid Research, 54, 2325-2340.
https://doi.org/10.1194/jlr.R036012
[23]  Morrison, D.J. and Preston, T. (2015) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200.
[24]  Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. and Gordon, J.I. (2012) Human Nutrition, the Gut Microbiome, and Immune System: Envisioning the Future. Nature, 474, 327-336.
https://doi.org/10.1038/nature10213
[25]  Fratta, E., Montico, B., Rizzo, A., Colizzi, F., Sigalotti, L. and Dolcetti, R. (2016) Epimutational Profile of Hematologic Malignancies as Attractive Target for New Epigenetic Therapies. Oncotarget, 7, 57327-57350.
https://doi.org/10.18632/oncotarget.10033
[26]  Zitvogel, L. and Daillere, R., Roberti, M.P., Routy, B. and Kroemer, G. (2017) Anticancer Effects of the Microbiome and Its Products. Nature Reviews Microbiology, 15, 465-478.
https://doi.org/10.1038/nrmicro.2017.44
[27]  Barz, M.L., Anhe, F.F., Varin, T.V., Desjardins, Y., Levy, E., Roy, D., Urdaci, M.C. and Marette, A. (2015) Probiotics as Complementary Treatment for Metabolic Disorder. Diabetes and Metabolism Journal, 39, 291-303.
https://doi.org/10.4093/dmj.2015.39.4.291
[28]  Park, M.H. and Igarashi, K. (2013) Polymines and Their Metabolites as Diagnostic Markers of Human Diseases. Biomolecules & Therapeutics, 21, 1-9.
https://doi.org/10.4062/biomolther.2012.097
[29]  Rhee, H.J., Kim, E.J. and Lee, J.K. (2007) Physiochemical Polyamines: Simple Primordial Stress Molecules. Journal of Cellular and Molecular Medicine, 11, 685-703.
https://doi.org/10.1111/j.1582-4934.2007.00077.x
[30]  Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352.
https://doi.org/10.1038/nri.2016.42
[31]  Nowotarski, S.L., Woster, P.M. and Casero, R.A. Jr. (2014) Polyamines and Cancer: Implications for Chemoprevention and Chemotherapy. Expert Reviews in Molecular Medicine, 15, e3.
https://doi.org/10.1017/erm.2013.3
[32]  Chikindas, M.L., Weeks, R., Drider, D., Chistyakov, V.A. and Dicks, L.M. (2017) Functions and Emerging Applications of Bacteriocins. Current Opinion in Biotechnology, 4, 23-28.
[33]  Walsh, C.J., Guinane, C.M., O’Toole, P. and Cotter, P.D. (2014) Beneficial Modulation of the Gut Microbiota. The FEBS Journal, 588, 4120-4130.
https://doi.org/10.1016/j.febslet.2014.03.035
[34]  Gillor, O., Nirgo, L.M. and Riley, M.A. (2005) Genetically Engineered Bacteriocins and Their Potential as the Next Generation of Antimicrobials. Current Pharmaceutical Design, 11, 1381-6128.
https://doi.org/10.2174/1381612053381666
[35]  Quintana, M.Q., Nicolas, T.I., Wachsman, M.B., Sinko, P.J., Castilla, V. and Chikindas, M. (2014) Anti Herpes Simplex Virus Type 2 Activity of the Antimicrobial Peptide Subtilosin. Journal of Applied Microbiology, 117, 1253-1259.
https://doi.org/10.1111/jam.12618
[36]  Turovskiy, Y., Ludescher, R.D., Aroutcheva, A.A., Faro, S. and Chikindas, M. (2009) Lactocin 160, a Bacteriocin Produced by Vaginal Lactobacillus Rhamnosus, Targets Cytoplasmic Members of the Vaginal Pathogen Gardnerella Vaginalis. Probiotics Antimicrob Proteins, 1, 67-74.
https://doi.org/10.1007/s12602-008-9003-6
[37]  Noll, K.S., Prichard, M.N., Khaykin, A., Sinko, P.J. and Chikindas, M.L. (2012) The Natural Antimicrobial Peptide Subtilosin Acts Synergistically with Glycerol Monolaurate, Lauric Arginate, and e-Poly-L-Lysine against Bacterial Vaginosis-Associated Pathogens but Not Human Lactobacilli. Antimicrob Agents Chemother, 56, 1756-1761.
https://doi.org/10.1128/AAC.05861-11
[38]  Rea, M.C., Sit, C.S., Clayton, E., O’Connor, P.M., Whittal R.M., Zheng, J., Vederas, J.C, Ross, R.P. and Hill, C. (2010) Thuricin CD, a Posttranslationally Modified Bacteriocin with a Narrow Spectrum of Activity against Clostridium Difficile. Proceedings of the National Academy of Sciences of the United States of America, 107, 9352-9357.
https://doi.org/10.1073/pnas.0913554107
[39]  Corr, S.C., Li, Y., Riedel, C.U., O’Toole, P.W., Hill, C. and Gahan, C.G. (2007) Bacteriocin Production as a Medium for the Antiinfective Activity of Lactobacillus Salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 104, 7617-7621.
https://doi.org/10.1073/pnas.0700440104
[40]  Svetoch, E., Eruslanov, B.V., Levchuk, V.P., Perelygin, V.Y., Mitsevich, E.V., Mitsevich, I.P., Stepanshin, J., Dyatlov, I., Seal, B.S. and Stern, N.J. (2011) Isolation of Lactobacillus salivaius (NRRL B-5003) and Characterization of Its Bacteriocin, Including the Antimicrobial Activity Spectrum. Applied and Environmental Microbiology, 77, 2749-2754.
https://doi.org/10.1128/AEM.02481-10
[41]  Akerey, B., Le-Lay, C., Fliss, I., Subirade, M. and Rouabhia, M. (2009) In Vitro Efficacy of Nisin Z against Candida Albicans Adhesion and Transition Following Contact with Normal Human Gingival Cells. Journal of Applied Microbiology, 107, 1298-1307.
https://doi.org/10.1111/j.1365-2672.2009.04312.x
[42]  Piper, C., Hill, C., Cotter, P.D. and Ross, R.P. (2011) Bioengineering of a Nisin A-Producing Lactobacillus Lactis to Create Isogenic Strains Producing the Natural Variants Nisin F, Q and Z. Microb Biotechnol, 4, 75-382.
https://doi.org/10.1111/j.1751-7915.2010.00207.x
[43]  Kwaadsteniet, M., VanReenan, C.A. and Dicks, L.M. (2010) Evaluation of Nisin F in the Treatment of Subcutaneous Skin Infections, as Monitored by Using a Bioluminescent Strain of Staphylococcus aureus. Probiotics Antimicrob Proteins, 2, 61-65.
https://doi.org/10.1007/s12602-009-9017-8
[44]  Shaikh, A.M. and Sreeja, V. (2017) Metabiotics and Their Health Benefits. International Journal of Food and Fermentation, 6, 11-23.
https://doi.org/10.5958/2321-712X.2017.00002.3
[45]  Lebeer, S., Vanderlevden, J. and Keersmaecker, C.J.D. (2008) Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews, 72, 728-764.
https://doi.org/10.1128/MMBR.00017-08
[46]  Sengul, N., Isik, S., Aslm, B., Ucer, G. and Demirbag, A.E. (2010) The Effect of Expolysaccharide-Producing Probiotic Strains on Gut Oxidative Damage in Experimental Colitis. Digestive Diseases and Sciences, 56, 707-714.
https://doi.org/10.1007/s10620-010-1362-7
[47]  Lenda, M.C., Nowak, B., Srottek, M., Gamian, A. and Marcinkiewicz, J. (2011) Immunoregulatory Potential of Exopolysaccharide from Lactobacillus Rhamnosus KL37. Effects on the Production of Inflammatory Mediators by Mouse Macrophages. International Journal of Experimental Pathology, 92, 382-391.
https://doi.org/10.1111/j.1365-2613.2011.00788.x
[48]  Surana, N.K. and Kasper, D.L. (2012) The Yin Yang of Bacterial Polysaccharides: Lessons Learned from B. fragilis PSA. Nature Reviews, 245, 13-26.
https://doi.org/10.1111/j.1600-065X.2011.01075.x
[49]  Matsuguchi, T., Takagi, A., Matsuzaki, T., Nagaoka, M., Ishikawa, K., Yokokura, T. and Yoshikal. Y. (2003) Lipoteichoic Acids from Lactobacillus Strains Elicit Strong Tumor Necrosis Factor Alpha-Inducing Activities in Macrophages through Toll Like Receptor 2. Clinical and Diagnostic Laboratory Immunology, 10, 259-266.
https://doi.org/10.1128/CDLI.10.2.259-266.2003
[50]  Huang, L., Shan, Y.J., He, C.X., Ren, M.H., Tian, P.J. and Song, W. (2015) Effects of L.paracasei subp. Paracasei X12 on Cell Cycle of Colon Cancer HT-29 Cells and Regulation of mTOR Signalling Pathway. Journal of Functional Foods, 21, 431-439.
https://doi.org/10.1016/j.jff.2015.12.024
[51]  Matsumoto, S. (2007) Anti Inflammatory Effects of Probiotic Lactobacillus Casei Strain Shirota in Chronic Intestinal Inflammatory Disorders. International Journal of Probiotics and Prebiotics, 3, 149-152.
[52]  Yan, F., Cao, H., Cover, T.L., Whitehead, R., Washington, M.K. and Polk, D.B. (2007) Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth. Gastroenterology, 132, 562-575.
https://doi.org/10.1053/j.gastro.2006.11.022
[53]  Wang, R., Jiang, L., Zhang, M., Zhao, L., Hao, Y., Guo, H., Sang, Y., Zhang, H. and Ren F. (2017) The Adhesion of Lactobacillus Salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins. Scientific Reports, 7, 44209.
https://doi.org/10.1038/srep44029
[54]  Tripathi, P., Beaussart, A., Alsteens, D., Dupres, V., Claes, I., Von, O.I., de Vos, W.M., Palva, A., Lebeer, S., Vanderleyden, J. and Dufrene, Y.F. (2013) Adhesion and Nanomechanics of Pili from the probiotic Lactobacillus rhamnosus GG, ACS Nano, 7, 3685-3697.
https://doi.org/10.1021/nn400705u
[55]  Meyrand, M., Guillot, A., Goin, M., Furlan, S., Armalyte, J, Kulakauskas, S., Cortes-Perez, N.G., Thomas, G., Chat, S., Pechoux, C., et al. (2013) Surface Proteome Analysis of a Natural Isolte of Lactococcus Lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells. Molecular & Cellular Proteomics, 12, 3935-3947.
https://doi.org/10.1074/mcp.M113.029066
[56]  Pokusaeva, K., Johnson, C., Luk, B., Uribe, G., Oezguen, N., Matsunami, R.K., Lugo, M., Major, A., Mori-Akiyama, Y., Hollister, E.B., et al. (2016) GABA-Producing Bifidobacterium Dentium Modulates Visceral Sensitivity in the Intestine. Neurogastroenterology & Motility, 29, e12904.
https://doi.org/10.1111/nmo.12904
[57]  Galland, L. (2014) The Gut Microbiome and the Brain. Journal of Medicinal Food, 17, 1261-1272.
https://doi.org/10.1089/jmf.2014.7000
[58]  O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G. and Cryan, J.E. (2014) Serotonin Tryptophan Metabolism and the Brain Gut Microbiome Axis. Behavioural Brain Research, 277, 32-48.
https://doi.org/10.1016/j.bbr.2014.07.027
[59]  Alkasir, R., Li, J., Li, X., Jin, M. and Zhu, B. (2016) Human Gut Microbiota: The Links with Dementia Development. Protein Cell, 8, 90-102.
https://doi.org/10.1007/s13238-016-0338-6
[60]  Wall, R., Marques, T.M., O’Sullivan, O., Ross, R.P., Shanahan, F., Quigley, E.M, Dinan, T.G., Kiely, B., Fitzgerald, G.F., Cotter, P.D., Fouhy, F. and Stanton, C. (2012) Contrasting Effects of Bifidobacterium Breve Ncimb 702258 and Bifidobacterium Breve DPC 6330 on the Composition of Murine Brain Fatty Acids and Gut Microbiota. American Journal of Clinical Nutrition, 95, 1278-1287.
https://doi.org/10.3945/ajcn.111.026435
[61]  Lee, Y. (2008) Isomer Specificity of Conjugated Linoleic Acid (CLA): 9E, 11E-CLA. Nutrition Research and Practice, 2, 326-330.
https://doi.org/10.4162/nrp.2008.2.4.326
[62]  Gaudier, E., Michel, C., Segain, J.P., Cherbu, C. and Hoebler, C. (2005) The VSL#3 Probiotic Mixture Modifies Microflora but Does Not Heal Chronic Dextran-Sodium Sulfate-Induced Colitis or Reinforce the Mucus Barrier in Mice. Journal of Nutrition, 135, 2753-2761.
https://doi.org/10.1093/jn/135.12.2753
[63]  Dow, J.M. (2017) Diffusible Signal Factor-Dependent Quorum Sensing in Pathogenic Bacteria and Its Exploitation for Disease Control. Journal of Applied Microbiology, 122, 2-11.
https://doi.org/10.1111/jam.13307
[64]  Jacobi, C.A., Grundler, S., Hsieh, C.J., Frick, J.S., Adam, P., Lamprecht, G., Autenrieth, I.B., Gregor, M. and Malfertheiner, P. (2012) Quorum Sensing in the probiotic Bacterium Escherichia Coli Nissle 1917 (Mutaflor)-Evidence That Furanosyl Borate Diester (AL-2) Is Influencing the Cytokine Expression in the DSS Colitis Mouse Model. Gut Pathogens, 4, 8.
https://doi.org/10.1186/1757-4749-4-8
[65]  Buck, B.L., Azcarate-Peril, M.A., Klaenhammer, T.R. (2008) Role of Autoinducer-2 on the Adhesion Ability of Lacobacillus Acidophilus. Journal of Applied Microbiology, 107, 269-279.
https://doi.org/10.1111/j.1365-2672.2009.04204.x
[66]  Mitsuma, T., Odajima, H., Momiyama, Z., Watanabe, K., Masuguchi, M., Sekine, T., Shidara, S. and Hirano, S. (2007) Enhancement of Gene Expression by a peptide P (CHWPR) Produced by Bifidobacterium Lactis BB-12. Microbiology and Immunology, 52, 144-155.
https://doi.org/10.1111/j.1348-0421.2008.00022.x
[67]  Jenabian, S.M., Vogensen, F.K. and Jespersen, L. (2011) The Quorum Sensing luxS Is Induced in Lactobacillus acidophilus NCFM in Response to Listeria monocytogenes. International Journal of Food Microbiology, 149, 269-273.
https://doi.org/10.1016/j.ijfoodmicro.2011.06.011
[68]  Li, S., Bostick, J.W. and Zhou, L. (2017) Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Frontiers Immunology, 8, 1909-1921.
https://doi.org/10.3389/fimmu.2017.01909
[69]  Li, S. and Heller, J.J. (2016) Ikaros Inhibits Group 3 Innate Lymphoid Cell Development and Function by Suppressing the Aryl Hydrocarbon Receptor Pathway. Immunity, 45, 185-197.
https://doi.org/10.1016/j.immuni.2016.06.027
[70]  Zelante, T., Iannitti, R.G., Cunha, C., Luca, A.D., Giovannini, G., Pieraccini, G., Zecchi, R., D’Angelo, C., Benedetti, C.M., Fallarino, F., et al. (2013) Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 39, 372-385.
https://doi.org/10.1016/j.immuni.2013.08.003
[71]  Kim, M. and Kim, C.H. (2016) Colonization and Effector Functions of Innate Lymphoid Cells in Mucosal Tissues. Microbes and Infection, 18, 604-614.
https://doi.org/10.1016/j.micinf.2016.06.005
[72]  Moller, N.P., Elisabeth, K., Ahrens, S., Roos, N. and Schrezmeir, J. (2008) Bioactive Peptides and Proteins from Foods: Indication for Health Effects. European Journal of Nutrition, 47, 171-182.
https://doi.org/10.1007/s00394-008-0710-2
[73]  Albenzio, M., Santillo, A., Carprese, M., Malva, A.D. and Marino, R. (2017) Bioactive Peptides in Animal Food Products. Foods, 6, 1-14.
[74]  Bauchart, C. and Remond, D. (2006) Small Peptides (<5 kDa) Found in Ready-to-Eat Beef Meat. Meat Science, 74, 658-666.
https://doi.org/10.1016/j.meatsci.2006.05.016
[75]  Fu, Y. and Young, J.F. (2017) Bioactive Peptides in Beef: Endogenous Generation through Postmortem Aging. Meat Science, 123, 134-142.
https://doi.org/10.1016/j.meatsci.2016.09.015
[76]  Korhonen, H. and Leppala, A.P. (1998) Impact of Processing on Bioactive Proteins and Peptides. Trends in Food Science and Technology, 9, 307-319.
https://doi.org/10.1016/S0924-2244(98)00054-5
[77]  Arihara, K. (2006) Strategies for Designing Novel Functional Meat Products. Meat Science, 74, 219-229.
https://doi.org/10.1016/j.meatsci.2006.04.028
[78]  Katayama, K., Anggraeni, H.E., Mori, T., Ahhmed, A.M., Kawahara, S., Suglyama, M., Nakayama, T., Maruyama, M. and Muguruma, M. (2008) Porcine Skeletal Muscle Troponin Is a Good Source of Peptides with Angiotensin-I Converting Enzyme Inhibitory Activity and Antihypertensive Effects in Spontaneously Hypertensive Rats. Journal of Agricultural and Food Chemistry, 56, 355-360.
https://doi.org/10.1021/jf071408j
[79]  Escudero, E. and Sentandreu, M.A. (2010) Angiotensin I-Converting Enzyme Inhibitory Peptides Generated from in Vitro Gastrointestinal Digestion of Pork Meat. Journal of Agricultural and Food Chemistry, 58, 2895-2901.
https://doi.org/10.1021/jf904204n
[80]  LeaBlanc, J.G., Milani, C., de Glori, G.S., Sesma, F., van Sinderen, D. and Ventura, M. (2013) Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Current Opinion in Biotechnology, 24,160-168.
https://doi.org/10.1016/j.copbio.2012.08.005
[81]  Biesalski, H.K. (2016) Nutrition Meets the Microbiome: Micronutrients and the Microbiota. Annals of the New York Academy of Sciences, 1372, 53-64.
https://doi.org/10.1111/nyas.13145
[82]  Pompei, A., Cordisco, L., Zanoni, S., Matteuzzi, D. and Rossi, M. (2007) Folate Production by Bifidobacteria as a Potential Probiotic Property. Applied and Environmental Microbiology, 73, 179-185.
https://doi.org/10.1128/AEM.01763-06
[83]  Taylor, S.O., Robert, E.W., James, L.S. and Jeff, R.B. (2012) Identification of Plasmalogens in the Cytoplasmic Membrane of Bifidobacterium Animalis subsp. Lactis. Applied and Environmental Microbiology, 78, 880-884.
https://doi.org/10.1128/AEM.06968-11
[84]  Murphy, E.J., Schapiro, M.B., Rapoport, S.I. and Shetty, H.U. (2000) Phospholipid Composition and Levels Are Altered in Down Syndrome Brain. Brain Research, 867, 9-18.
https://doi.org/10.1016/S0006-8993(00)02205-8
[85]  Han, X., Holtzman, D.M. and Mckeel, Jr D.W. (2011) Plasmologen Deficiency in Early in Early Alzheimer’s Disease Subjects and in Animal Models: Molecular Characterization Using Electrospray Ionization Mass Spectrometry. Journal of Neurochemistry, 77, 1168-1180.
https://doi.org/10.1046/j.1471-4159.2001.00332.x
[86]  Singh, I., Paintilla, A.S., Khan M. and Contreras, M.A. (2004) Impaired Peroxisomal Function in the Central Nervous System with Inflammatory Disease of Experimental Autoimmune Encephalomyelitis Animals and Protection by Lovastin Treatment. Brain Research, 1022, 1-11.
https://doi.org/10.1016/j.brainres.2004.06.059
[87]  Fabelo, N., Martin, V., Sanntpere, G., Marln, R., Torrent, L., Ferrer, I. and Diaz, M. (2011) Severe Alteration in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease. Molecular Medicine, 17, 1107-1118.
https://doi.org/10.2119/molmed.2011.00119
[88]  Wang, Q.C., Nie, Q.H. and Feng, Z.H. (2003) RNA Interference: Antivral Weapon and Beyond. World Journal of Gastroenterology, 9, 1657-1661.
https://doi.org/10.3748/wjg.v9.i8.1657
[89]  Sharma, M. and Shukla, G. (2016) Metabiotics: One Step Ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Frontiers in Microbiology, 7, 1940.
https://doi.org/10.3389/fmicb.2016.01940
[90]  Barrett, E., Ross, R.P., O’Toole, P.W., Fitzgerald, G.F. and Stanton, C. (2012) Gamma-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. Journal of Applied Microbiology, 113, 411-441.
https://doi.org/10.1111/j.1365-2672.2012.05344.x
[91]  Shishov, V.A., Kirovskaia, T.A., Kudrin, V.S. and Oleskin, A.V. (2009) Amine Neuromediators, Their Precursors, and Oxidation Products in the Culture of Escherichia coli K-12. Applied Biochemistry and Microbiology, 45, 550-554.
[92]  Özogul, F. (2011) Effects of Specific Lactic Acid Bacteria Species on Biogenic Amine Production by Foodborne Pathogen. International Journal of Food Science & Technology, 46, 478-484.
https://doi.org/10.1111/j.1365-2621.2010.02511.x
[93]  Tsavkelova, E.A., Botvinko, I.V., Kudrin, V.S. and Oleskin, A.V. (2000) Detection of Neurotransmitter Amines in Microorganisms with the Use of High-Performance Liquid Chromatography. Doklady Biochemistry, 372, 115-117.
[94]  Marquardt, P. and Spitznagel, G. (1959) Bakterielle Acetylcholine Bildung in Kunstlichen Nahrboden. Arzneimittelforschung, 9, 456-465.
[95]  Kawashima, K., Misawa, H., Moriwaki, Y, Fujii, Y.X., Fujii, T., Horiuchi, Y., Yamada, T., Imanaka, T. and Kamekura, M. (2007) Ubiquitous Expression of Acetylcholine and Its Biological Functions in Life Forms without Nervous Systems. Life Sciences, 80, 2206-2209.
https://doi.org/10.1016/j.lfs.2007.01.059
[96]  Landete, J.M., De las Rivas, B., Marcobal, A., and Munoz, R. (2008) Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 48, 697-714.
https://doi.org/10.1080/10408390701639041
[97]  Thomas, C.M., Hong T., Van Pijkeren J.P, Hemarajata, P., Trinh D.V., Hu W., Britton R.A., Kalkum, M. and Versalovic, J. (2012) Histamine Derived from Probiotic Lactobacillus Reuteri Suppresses TNF via Modulation of PKA and Erk Signaling. PLoS One, 7, e31951.
https://doi.org/10.1371/journal.pone.0031951
[98]  Jellet, J.J., Forrest, T.P., Macdonald, I.A., Marrie, T.J. and Holdeman, L.V. (1980) Production of indole-3-propanoic Acid and 3-(p-hydroxyphenyl) Propanoic Acid by Clostridium Sporogenes: a Convenient Thin-Layer Chromatography Detection System. Canadian Journal of Microbiology, 26, 448-453.
https://doi.org/10.1139/m80-074
[99]  Bendheim, P.E, Poeggeler, B, Neria, E, Ziv, V., Pappolla, M.A. and Chain, D.G. (2002) Development of indole-3-propionic acid (OXIGON) for Alzheimer’s Disease. Journal of Molecular Neuroscience, 19, 213-217.
https://doi.org/10.1007/s12031-002-0036-0
[100]  Russell, W.R., Hoyles, L., Flint, H.J, and Dumas, M.E. (2013) Colonic Bacterial Metabolites and Human Health. Current Opinion in Microbiology, 16, 246-254.
https://doi.org/10.1016/j.mib.2013.07.002
[101]  Bradley, W.G. and Mash, D.C. (2009) Beyond Guam: the Cyanobacteria/BMAA Hypothesis of the Cause of ALS and Other Neurodegenerative Diseases. Amyotrophic Lateral Sclerosis, 10, 7-20.
https://doi.org/10.3109/17482960903286009
[102]  Levi, M., Keller, T.T., van Gorp, E. and ten Cate, H. (2003) Infection and inflammation and the Coagulation System. Cardiovascular Research, 60, 26-39.
https://doi.org/10.1016/S0008-6363(02)00857-X
[103]  Wang, X. and Quinn, P.J. (2010) Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria. Subcellular Biochemistry, 53, 3-25.
https://doi.org/10.1007/978-90-481-9078-2_1
[104]  Vuong, H.E. and Hsiao, E.Y. (2016) Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biological Psychiatry, 81, 411-423.
https://doi.org/10.1016/j.biopsych.2016.08.024
[105]  Hsiao, E.Y., McBride, S.W., Hsien S., Sharon, G., Hyde, E.R., McCue T., Codelli J.A, Chow, J., Reisman, S.E., Petrosino, J.F., Patterson, P.H. and Mazmanian, S.K. (2013) Microbiota Modulates Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorder. Cell, 155, 1451-1463.
https://doi.org/10.1016/j.cell.2013.11.024
[106]  Petra, L. (2012) Does the Human Gut Microbiota Contribute to the Etiology of Autism Spectrum Disorders? Digestive Diseases and Sciences, 57, 1987-1989.
https://doi.org/10.1007/s10620-012-2286-1
[107]  Foster, J.A. and Neufeld, K.A.M. (2013) Gut-Brain Axis: How the Microbiome Influences Anxiety and Depression. Trends in Neurosciences, 36, 305-312.
https://doi.org/10.1016/j.tins.2013.01.005
[108]  Reid, G., Abrahamsson, T., Bailey, M., Bindels, L.B., Bubnov, R., Ganguli, K., Martoni, C., O’Neill, C., Savignac, H.M., Stanton, C., et al. (2017) How Do Probiotics and Prebiotics Function at Distant Sites? Beneficial Microbes, 8, 521-533.
https://doi.org/10.3920/BM2016.0222
[109]  Dinan, T.G. and Cryan, J.F. (2013) Melancholic Microbes: A Link between Gut Microbiota and Depression? Neurogastroenterology & Motility, 25, 713-719.
https://doi.org/10.1111/nmo.12198
[110]  Proctor, C., Thiennimitr, P., Chattipakorn, N., Chattipakorn, S.C. (2017) Diet, Gut Microbiota and Cognition. Metabolic Brain Disease, 32, 1-17.
https://doi.org/10.1007/s11011-016-9917-8
[111]  Hu, X., Wang, T., Jin, F. (2016) Alzheimer’s Disease and Gut Microbiota. Science China Life Sciences, 59, 1006-1023.
[112]  Reitz, C. (2011) Epidemiology of Alzheimer Disease. Nature Reviews Neurology, 7, 137-152.
https://doi.org/10.1038/nrneurol.2011.2
[113]  Dragicevic, N., Copes, N., O’Neal-Moffitt, G., Jin, J., Buzzeo, R., Mamcarz, M., tan, J., Cao, C., Olcese, JM., Arendash, G.W. and Bradshaw, P.C. (2011) Melatonin Treatment Restores Mitochondrial Function in Alzheimer’s Mice: A Mitochondrial Protective Role of Melatonin Membrane Receptor Signaling. Journal of Pineal Research, 51, 75-86.
https://doi.org/10.1111/j.1600-079X.2011.00864.x
[114]  Westfall, S., Lomis, N., Singh, S.P., Dal, S.Y. and Prakash, S. (2015) The Gut Microflora and Its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration. Journal of Diabetes and Metabolism, 6, 8.
[115]  Scott, L., Dawson, V.L. and Dawson, T.M. (2017) Trumping Neurodegeneration: Targetting Common Pathways Regulated by Autosomal Recessive Parkinson’s Disease Genes. Experimental Neurology, 298, 191-201.
[116]  Mulak, A. and Bonaz, B. (2015) Brain-Gut-Microbiota Axis in Parkinson’s Disease. World Journal of Gastroenterology, 21, 10609-10620.
https://doi.org/10.3748/wjg.v21.i37.10609
[117]  Bian, L., Nagata, S, Takashi, R., Mohammed S., Ohta, T., Yuki, N., Wang, C., Takano, K., Daibo, M., Momoto, K. and Yamashiro, Y. (2011) Effects of the Continuous intake of Lactobacillus Caesi Strain Shirota-Fermented Milk on Risk Management of Long Term Inpatients at Health Service Facilities for the Elderly. International Journal of Probiotics and Prebiotics, 6, 123-132.
[118]  Bach, J.F. (2002) The effect of Infections on Susceptibility to Autoimmune and Allergic Diseases. The New England Journal of Medicine, 347, 911-920.
https://doi.org/10.1056/NEJMra020100
[119]  Rook, G.A.W. and Brunet, L.R. (2005) Microbes, Immunoregulation, and the Gut. Journal of Medical Genetics, 54, 317-320.
https://doi.org/10.1136/gut.2004.053785
[120]  Campbell, A.W. (2014) Autoimmunity and Gut. Autoimmune Diseases, 2014, 12.
https://doi.org/10.1155/2014/152428
[121]  Wu, X., He, B., Liu, J., Feng, H., Li, D., Guo, B., Liang, C., Dang, L., Wang, L., Tian, J., et al. (2016) Molecular Insight into the Gut Microbiota and Rheumatoid Arthritis. International Journal of Molecular Sciences, 17, 43.
https://doi.org/10.3390/ijms17030431
[122]  Mu, Q., Zhang, H. and Luo, X.M. (2015) SLE: Another Autoimmune Disorder Influenced by Microbes and Diet? Frontiers in Immunology, 6, 608.
https://doi.org/10.3389/fimmu.2015.00608
[123]  Lavasani, S., Dzhambazov, B., Nouri, M., Fak F., Buske, S., Molin, G., Thorlacius, H., Alenfall, J., Jeppsson, B. and Westrom, B. (2010) A Novel Probiotic Mixture Exerts a Therapeutic Effect on Experimental Autoimmune Encephalomyelitis MEDiated by IL-10 Producing Regulatory T Cells. PloS One, 5, e9009.
https://doi.org/10.1371/journal.pone.0009009
[124]  Qiu, X., Zhang, M., Yang, X., Hong, N. and Yu, C. (2013) Faecalibacterium Prausnitzii Upregulates Regulatory T Cells and Anti-Inflammatory Cytokines in Treating TNBS-Induced Colitis. Journal of Crohn's and Colitis, 7, e558-568.
https://doi.org/10.1016/j.crohns.2013.04.002
[125]  So, J.S., Kwon, H.K., Lee, C.G., Yi, H.J., Park, J.A., Lim, S.Y., Hwang, K.C., Jeon, Y.H. and Im, S.H. (2008) Lactobacillus Caesi Suppresses Experimental Arthritis by Down-Regulating T Helper 1 Effecter Functions. Molecular Immunology, 45, 2690-2699.
https://doi.org/10.1016/j.molimm.2007.12.010
[126]  Hatakka, K., Martio, J., Korpela, M., Herranen, M., Poussa, T., Laasanen, T., Saxelin, M., Vapaatalo, H., Moilanen, E. and Korpela, R. (2003) Effects pf Probiotic Therapy on the Activity and Activation of Mild Rheumatoid Arthritis—A Pilot Study. Scandinavian Journal of Rheumatology, 32, 211-215.
https://doi.org/10.1080/03009740310003695
[127]  Bischoff, S.C., Boirie, Y., Cederholm, T., Chourdakis, M., Cuereda, C., Delzenne, N.M., Deutz, N.E., Fouque, D., Genton, L. and Gil, C., et al. (2017) Towards a Multidisciplinary Approach to Understand and Manage Obesity and Related Diseases. Clinical Nutrition, 36, 917-938.
https://doi.org/10.1016/j.clnu.2016.11.007
[128]  Ichimura, A., Hasegawa, S., Kasubuchi, M. and Kimura, I. (2014) Free Fatty Acid Receptors as Therapeutic Targets for the Treatment of Disease. Frontiers in Pharmacology, 5, 00236.
https://doi.org/10.3389/fphar.2014.00236
[129]  Esgalhado, M., Kemp, J.A., Damasceno, N.R.T., Fogue, D. and Mafra, D. (2017) Short-Chain Fatty Acids: A Link between Prebiotics and Microbiology. Future Microbiology, 12, 23-29.
[130]  Pais, R., Gribble, F.M. and Reimann, F. (2016) Stimulation of Incretin Secreting Cells. Advances in Endocrinology and Metabolism, 7, 24-42.
https://doi.org/10.1177/2042018815618177
[131]  Stenman, L.K., Wage, A., Garret, C., Kiopp, P., Burcelin, R. and Lahtinen, S. (2014) Potential Probiotic Bifidobacterium Animalis ssp. Lactis Prevents Weight Gain and Glucose Intolerance in Diet-Induced Obese Mice. Beneficial Microbes, 5, 437-445.
https://doi.org/10.3920/BM2014.0014
[132]  Takahashi, S., Anzawa, D., Takami, K., Ishizuka, A., Mawatari, T., Kamikado, K., Sugimura, H. and Nishijima, T. (2016) Effect of Bifidobacterium Animalis spp. Lactis GCL2505 on Visceral Fat Accumulation in Healthy Japanese Adults: A Randomized Controlled Trial. Bioscience of Microbiota, Food and Health, 35, 163-171.
https://doi.org/10.12938/bmfh.2016-002
[133]  Puddu, A., Sanguineti, R., Montecucco, F. and Viviani, G.L. (2014) Evidence for the Gut Microbiota Short Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes. Mediators of Inflammation, 9, 1-9.
[134]  Aronsson, L., Huang, Y., Parini, P., Korach-Andre, M., Gustafsson, J.A., Pettersson, S., Arulampalam, V. and Rafter, J. (2010) Decreased Fat Storage by lactobacillus Paracaesi Is Associated with Increased Levels of Angiopoietin-Like 4 Protein (ANGPTL4). Plos One, 5, e13087.
https://doi.org/10.1371/journal.pone.0013087
[135]  Peng, L., Li, Z.R., Green, R.S., Holzman, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619-1925.
https://doi.org/10.3945/jn.109.104638
[136]  Musso, G., Gambino, R. and Cassader, M. (2010) Obesity, Diabetes, and Gut Microbiota: The Hygiene Hypothesis Expanded? Diabetes Care, 33, 2277-2284.
https://doi.org/10.2337/dc10-0556
[137]  Begley, M., Hill, C. and Gahan, C.G.M. (2006) Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental Microbiology, 72, 729-1738.
https://doi.org/10.1128/AEM.72.3.1729-1738.2006
[138]  Yoo, J.Y. and Kim, S.S. (2016) Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients, 8, 173.
https://doi.org/10.3390/nu8030173
[139]  Ettinger, G., MacDonald, K., Reid, G. and Burtaon, J.P. (2014) The Influence of the Human Microbiome and Probiotics on Cardiovascular Health. Gut Microbes, 5, 719-728.
https://doi.org/10.4161/19490976.2014.983775
[140]  Zhang, J., Deng, Z., Liao, J., Song, C., Liand, C., Xue, H., Wang, L., Zhang, K. and Yan, G. (2013) Leptin Attenuates Cerebral Ischemia Injury through the Promotion of Energy Metabolism via the PI3K/Akt Pathway. The Journal of Cerebral Blood Flow & Metabolism, 33, 567-574.
https://doi.org/10.1038/jcbfm.2012.202
[141]  Shakeria, M., Razavi, S.H., Ziai, S.A., Khodaiyan, F., Yarmand, M.S. and Moayedi, A. (2015) Proteolytic and ACE-Inhibitory Activities of Probiotic Yogurt Containing On-Viable Bacteria as Affected by Different Levels of Fat, Inulin and Starter Culture. Journal of Food Science and Technology, 52, 2428-2433.
https://doi.org/10.1007/s13197-013-1202-9
[142]  Mahasneh, S.A. and Mahasneh, A.M. (2017) Probiotics: A Promising Role in Dental Health. Dentistry Journal, 5, 26.
https://doi.org/10.3390/dj5040026
[143]  Pandey, K.R., Naik, S.R. and Vakil, B.V. (2015) Prebiotics, Preiotics and Synbiotics-A Review. Journal of Food Science and Technology, 52, 7577-7587.
https://doi.org/10.1007/s13197-015-1921-1
[144]  Gupta, G. (2011) Probiotics and Periodontal Health. Journal of Medicine and Life, 4, 387-394.
[145]  Bron, P.A., Kleerebezem, M., Brummer, R.J., Cani, P.D., Mercenier, A., MacDonald, T.T., Garcia-Rodenas, C.L. and Wells, J.M. (2017) Can Probiotics Modulate Human Disease by Impacting Intestinal Barrier Function? British Journal of Nutrition, 117, 93-107.
https://doi.org/10.1017/S0007114516004037
[146]  Helmy, Y.A., Kassem, II., Kumar, A. and Rajashekara, G. (2017) In Vitro Evaluation of the Probiotic E. coli Nissle 1917 on Campylobacter Jejuni’s Invasion and Intracellular Survival in Human Colonic Cells. Frontiers in Microbiology, 8, 1588.
https://doi.org/10.3389/fmicb.2017.01588
[147]  Fitzpatrick, L.R. (2013) Probiotics for the Treatment of Clostridium Difficile Associated Disease. World Journal of Gastrointestinal Pathophysiology, 4, 47-52.
https://doi.org/10.4291/wjgp.v4.i3.47
[148]  Rea, M.C., Alemayehu, D., Casey, P.G., O’Connor, P.M., Lawlor, P.G., Walsh, M., Shanahan, F., Kiely, B., Ross, R.P. and Hill, C. (2014) Bioavailibility of the Anti-Clostridial Bacteriocin Thuricin CD in Gastrointestinal Tract. Microbiology, 160, 439-445.
https://doi.org/10.1099/mic.0.068767-0
[149]  Lee, A.S. and Song, K.P. (2005) LuxS/Autoinducer-2 Quorum Sensing Molecule Regulates Transcriptional Virulence in Clostridium Difficile. Biochemical and Biophysical Research Communications, 335, 659-666.
https://doi.org/10.1016/j.bbrc.2005.07.131
[150]  Mack, D.R., Michail, S., Wei, S., McDougall, L. and Hollingsworth, M.A. (1999) Probiotics Inhibit Enteropathogenic E. coli Adherence in Vitro by Inducing Intestinal Mucin Gene Expression. American Journal of Physiology, 276, G941-950.
[151]  Roos, S. and Jonsson, H. (2002) A High Molecular-Mass Cell-Surface Protein from Lactobacillus Reuteri 1063 Adheres to Mucus Components. Microbiology, 148, 433-442.
https://doi.org/10.1099/00221287-148-2-433
[152]  Hirano, J., Yoshida, T., Sugiyama, T., Koide, N., Mori, I. and Yokochi, T. (2003) The Effect of Lactobacillus rhamnosus on Enterohemorrhagic Escherichia coli Infection of Human Intestinal Cells In Vitro. Microbiology and Immunology, 47, 405-409.
https://doi.org/10.1111/j.1348-0421.2003.tb03377.x
[153]  Homan, M. and Orel, R. (2015) Are Probiotics Useful in Helicobacter Pylori Eradication? World Journal of Gastroenterology, 21, 10644-10653.
https://doi.org/10.3748/wjg.v21.i37.10644
[154]  Roy, S. and Trincheri, G. (2017) Microbiota: A Key Orchestrator of Cancer Therapy. Nature Reviews Cancer, 17, 271-285.
https://doi.org/10.1038/nrc.2017.13
[155]  Licciardi, P.V., Wong, S.S, Tang, M.L. and Karagiannis, T.C. (2010) Epigenome Targeting by Probiotic Metabolites. Gut Pathogens, 2, 24.
https://doi.org/10.1186/1757-4749-2-24
[156]  Kim, C.H., Park, J. and Kim, M. (2014) Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Network, 14, 277-288.
https://doi.org/10.4110/in.2014.14.6.277
[157]  Arpania, N., Campbell, C., Fan, X., Dikiy, S., VanDer Veeken, J., DeRoos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J. And Rudensky, A.Y. (2013) Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature, 504, 451-455.
https://doi.org/10.1038/nature12726
[158]  Park, K.Y., Li, G. and Platt, M.O. (2015) Monocyte-Derived Macrophage Assisted Breast Cancer Cell Invasion as a Personalized, Predictive Metric to Score Metastatic Risk. Scientific Reports, 5, 13855.
https://doi.org/10.1038/srep13855
[159]  Sepulveda, A.R., Yao, Y., Yan, W., Park, D.I., Kim, J.J., Gooding, W., Abudayyeh, S. and Graham, D.Y. (2010) CpG Methylation and Reduced Expression of O6-methylguanine DNA Methyltransferase Is Associated with Helicobacter pylori Infection. Gastroenterology, 138, 1836-1844.
https://doi.org/10.1053/j.gastro.2009.12.042
[160]  Ding, S.Z. and Fischer, W., Kaparakis-Liaskos, M., Liechti, G., Merrell, S., Grant, P.A., Ferrero, R.L., Crowe, S.E., Haas, R., Hatakeyama, M. and Goldberg, J.B. (2010) Helicobacter Pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithlial Cells, and Its Implication in Pathogenesis. PLoS ONE, 5, e9875.
https://doi.org/10.1371/journal.pone.0009875
[161]  Medina, V., Edmonds, B., Young, G.P., James, R., Appleton, S. and Zalewski, P.D. (1997) Induction of Caspase-3 Protease Activity and Apoptosis by Butyrate and Trichostatin A (Inhibitors of Histone Deacetylase): Dependence on Protein Synthesis and Synergy with a Mitochondrial/Cytochrome c-dependent Pathway. Cancer Research, 57, 3697-707.
[162]  Archer, S.Y., Meng, S., Shei, A. and Hodin, R.A. (1998) p21WAF1 Is Required for Butyratr-Mediated Growth Inhibition of Human Colon Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 6791-6796.
https://doi.org/10.1073/pnas.95.12.6791
[163]  Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y. and Hodin, R.A. (2002) Propionate as a Health-Promoting Microbial Metabolite in the Human Gut. Nutrition Reviews, 69, 245-258.
[164]  Bordonaro, M., Lazarova, D.L. and Sartorelli, A.C. (2008) Butyrate and Wnt Signalling: A Possible Solution to the Puzzle of Dietary Fiber and Colon Cancer Risk? Cell Cycle, 7, 1178-1183.
https://doi.org/10.4161/cc.7.9.5818
[165]  Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8.
https://doi.org/10.1111/j.1574-6968.2009.01514.x
[166]  Jan, G., Belzacq, A.S., Haouzi, D., Rouault, A., Metivier, D., Kroemer, G. and Brenner, C. (2002) Propionibacteria Induce Apoptosis of Colorectal Carcinoma Cells via Short-Chain Fatty Acids Acting on Mitochondria. Cell Death and Differentiation, 9, 179-188.
https://doi.org/10.1038/sj.cdd.4400935
[167]  Lan, A., Lagadic-Gossmann, D., Leimaire, C., Brenner, C. and Jan, G. (2007) Acidic Extracellular pH Shifts Colorectal Cancer Cell Death from Apoptosis to Necrosis Upon Exposure to Propionate and Acetate, Major End-Products of the Human Probiotic Propionibacteria. Apoptosis, 12, 573-591.
https://doi.org/10.1007/s10495-006-0010-3
[168]  Hosseini, E., Grootaert, C., Verstraete, W. and Van de Wiele, T. (2011) Propionate as a Health-Promoting Microbial Metabolite in the Human Gut. Nutrition Reviews, 69, 245-258.
https://doi.org/10.1111/j.1753-4887.2011.00388.x
[169]  Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H.C., Rolph, M.S., Mackay, F., Artis, D., Xavier, R.J., Teixeaira, M.M. and Mackay, C.R. (2009) Regulation of Inflammatory by Gut Microbiota and Chhemoattractant Receptor GPR43. Nature, 41, 1282-1286.
https://doi.org/10.1038/nature08530
[170]  Liu, C.T., Chu, F.J., Chou, C.C. and Yu, R.C. (2011) Antiproliferative and Cytotoxic Effects of Cell Fractions and Exopolysaccharides from Lactobacillus caesi 01. Mutation Research: Genetic Toxicology and Environmental Mutagenesis, 721, 157-162.
https://doi.org/10.1016/j.mrgentox.2011.01.005
[171]  Narayanan, A., Baskaran, S.A., Amalaradjou, M.A. and Venkitanarayanan, K. (2015) Anticarcinogenic Properties of Medium Chain Fatty Acids on Human Colorectal, Skin and Breast Cancer Cells in Vitro. International Journal of Molecular Sciences, 16, 5014-5027.
https://doi.org/10.3390/ijms16035014
[172]  Davis, C.D. and Milner, J.A. (2009) Gastrointestinal Microflora, Food Components and Colon Cancer Prevention. The Journal of Nutritional Biochemistry, 20, 743-752.
https://doi.org/10.1016/j.jnutbio.2009.06.001
[173]  Urbanska, A.M., Bhathena, J., Martoni, C. and Prakash, S. (2009) Estimation of the Potential Antitumor Activity of Microencapsulated Lactobacillus acidophilus Yogurt Formulation in the Attenuation of Tumorigenesis in Apc (Min/+) Mice. Digestive Diseases and Sciences, 54, 264-273.
https://doi.org/10.1007/s10620-008-0363-2
[174]  Uccello, M., Malaguarnera, G., Basile, F., D’agata, V., Malaguarnera, M., Bertino, G., Vacante, M., Drago, F. and Biondi, A. (2012) Potential Role of Probiotics on Colorectal Cancer Prevention. BMC Surgery, 12, S35.
https://doi.org/10.1186/1471-2482-12-S1-S35
[175]  Zanello, G., Meurens, F., Berri, M., Chevaleyre, C., Melo, S., Auclair, E. and Salmon, H. (2011) Saccharomyces Cerevisiae Decreases Inflammatory Responses Induced by F4+ Enterotoxigenic Escherichia coli I Porcine Intestinal Epithelial Cells. Veterinary Immunology and Immunopathology, 141, 133-138.
https://doi.org/10.1016/j.vetimm.2011.01.018
[176]  Kato, K., Kuhara, A., Yoneda, T., Inoue, T., Takao, T., Ohgami, T., Dan, L., Kuboyama, A., Kusunoki, S., Takeda, S. and Wake, N. (2011) Sodium Butyrate Inhibits the Self-Renewal Capacity of Endometrial Tumor Side-Population Cells by Inducing DNA Damage Responses. Molecular Cancer Therapeutics, 10, 1430-1439.
https://doi.org/10.1158/1535-7163.MCT-10-1062
[177]  Laurence, Z., Romain, D., Roberti, M.P., Routy, B. and Kroemer, G. (2017) Anticancer Effects of the Microbiome and Its Products. Nature Reviews Microbiology, 15, 465-478.
https://doi.org/10.1038/nrmicro.2017.44
[178]  Feldman, D., Zhao, X.Y. and Krishnan, A.V. (2000) Vitamin D and Prostate Cancer. Journal of Endocrinology, 141, 5-9.
https://doi.org/10.1210/endo.141.1.7341
[179]  Lamson, D.W. and Plaza, S.M. (2003) The Anticancer Effects of Vitamin K. Alternative Medicine Review, 8, 203-318.
[180]  Okomoto, M., Oshikawa, T., Ohe, G., Nishikawa, H., Furuichi, S., Tano, T., Moriya, Y., Saito, M. and Sato, M. (2001) Severe Impairment of Anti-Cancer Effect of Lipoteichoic Acid-Related Molecules Isolated from a Penicillin-Killed Streptococcus pyogenes in Toll-Like Receptor 4-deficient Mice. International Immunopharmacology, 1, 1789-1795.
https://doi.org/10.1016/S1567-5769(01)00103-5

Full-Text

comments powered by Disqus