All Title Author
Keywords Abstract

The Thermal Radiation of the Atmosphere and Its Role in the So-Called Greenhouse Effect

DOI: 10.4236/acs.2018.82014, PP. 212-234

Keywords: IR (Infrared) Radiation of Gases, Thermal Radiation of the Atmosphere, Albedo, Solar Adsorption Coefficient, Radiation Equilibrium, Limiting Temperature

Full-Text   Cite this paper   Add to My Lib


Knowledge about thermal radiation of the atmosphere is rich in hypotheses and theories but poor in empiric evidence. Thereby, the Stefan-Boltzmann relation is of central importance in atmosphere physics, and holds the status of a natural law. However, its empirical foundation is little, tracing back to experiments made by Dulong and Petit two hundred years ago. Originated by Stefan at the end of the 19th century, and theoretically founded afterwards by Boltzmann, it delivers the absolute temperature of a blackbody—or rather of a solid opaque body (SOB)—as a result of the incident solar radiation intensity, the emitted thermal radiation of this body, and the counter-radiation of the atmosphere. Thereby, a similar character of the blackbody radiation—describable by the expression σ·T4—and the atmospheric counter-radiation was assumed. But this appears quite abstruse and must be questioned, not least since no pressure-dependency is provided. Thanks to the author’s recently published work—proposing novel measuring methods—, the possibility was opened-up not only to find an alternative approach for the counter-radiation of the atmosphere, but also to verify it by measurements. This approach was ensued from the observation that the IR-radiative emission of gases is proportional to the pressure and to the square root of the absolute temperature, which could be bolstered by applying the kinetic gas theory. The here presented verification of the modified counter-radiation term A·p·T0.5 in the Stefan-Boltzmann relation was feasible using a direct caloric method for determining the solar absorption coefficients of coloured aluminium-plates and the respective limiting temperatures under direct solar irradiation. For studying the pressure dependency, the experiments were carried out at locations with different altitudes. For the so-called atmospheric emission constant A an approximate value of 22 Wm-2 bar-1 K-0.5 was found. In the non-steady-state, the total thermal emission power of the soil is given by the difference between its blackbody radiation and the counter-radiation of the atmosphere. This relation explains to a considerable part the fact that on mountains the atmospheric temperature is lower than on lowlands, in spite of the enhanced sunlight intensity. Thereto, the so-called greenhouse gases such as carbon-dioxide do not have any influence.


[1]  Planck, M. (1900) Ueber Irreversible Strahlungsvorgänge. Annals of Physics, 306, 69-116.
[2]  Planck, M. (1900) Entropie und Temperatur strahlender Wärme. Annals of Physics, 306, 719-737.
[3]  Planck, M. (1900) Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen physikalischen Gesellschaft, 2, 237-245.
[4]  Beer, A. (1852) Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik, 62, 78-88.
[5]  Tyndall, J. (1861) On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction. Philosophical Magazine and Journal of Science, 22, 169-194 and 273-285.
[6]  Stefan, J. (1879) über die Beziehung zwischen der Wärmestrahlung und der Temperatur. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Vol. 79, Aus der k.k. Hof-und Staatsdruckerei, 391-428.
[7]  Dulong, M.M. and Petit (1817) Des Recherches sur la Mesure des Températures et sur les Lois de la communication de la chaleur. Annales de Chimie et de Physique, 2, 225-264 (“Des Lois du Refroidissement”) and 337-367 (“Du Refroidissement dans l’air et dans les gaz”).
[8]  Lummer, O. und Pringsheim, E. (1899) Die Verteilung der Energie im Spektrum des schwarzen Körpers. Verhandlungen der Deutschen Physikalischen Gesellschaft, 1, 23-41.
[9]  Boltzmann, L. (1884) Ableitung des Stefan’schen Gesetzes betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Annalen der Physik und Chemie, 22, 291-294.
[10]  Meschede, D. (2002) Gerthsen Physik. Springer, Berlin, 21.
[11]  Allmendinger, T. (2016a) The Solar-Reflective Characterization of Solid Opaque Materials. International Journal of Science and Technology Educational Research, 7, 1-17.
[12]  Kirchhoff, G. (1860) Ueber das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Annals of Physics, 109, 275-301.
[13]  Kirchhoff, G. (1861) On a New Proposition in the Theory of Heat. Philosophical Magazine, 21, 241-247.
[14]  Allmendinger, T. (2016) The Thermal Behaviour of Gases under the Influence of Infrared-Radiation. International Journal of Physical Sciences, 11, 183-205.
[15]  Allmendinger, T. (2017) A Novel Investigation about the Thermal Behaviour of Gases under the Influence of IR-Radiation: A Further Argument against the Greenhouse Thesis. Journal of Earth Science & Climatic Change, 8, 393.
[16]  Visconti, G. (2001) Fundamentals of Physics and Chemistry of the Atmosphere. Springer, Berlin.
[17]  Boeker, E.G. and van Grondelle, R.I. (2011) Environmental Physics. 3rd Edition, John Wiley & Sons Ltd., Hoboken.
[18]  Allmendinger, T. (2017) The Refutation of the Climate Greenhouse Theory and a Proposal for a Hopeful Alternative. Environment Pollution and Climate Change, 1, 123.
[19]  Arrhenius, S. (1896) On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philosophy Magazine, 41, 238-276.
[20]  Ångström, K. (1901) Ueber die Abhängigkeit der Absorption der Gase, besonders der Kohlensäure, von der Dichte. Annalen der Physik, 311, 163-173.
[21]  Allmendinger, T. (2017) Measures at Buildings for Mitigating the Microclimate. Environment Pollution and Climate Change, 1, 128.


comments powered by Disqus