All Title Author
Keywords Abstract

Large-Eddy Simulation and Wind Tunnel Experiment of Airflow over Bolund Hill

DOI: 10.4236/ojfd.2018.81003, PP. 30-43

Keywords: Bolund Hill, CFD, LES, RIAM-COMPACT, Wind Tunnel Experiment

Full-Text   Cite this paper   Add to My Lib


In the present study, wind conditions were numerically predicted for the site of the Bolund hill using the RIAM-COMPACT natural terrain version software, which is based on an LES turbulence model (CFD). In addition, airflow measurements were made using a split-fiber probe in the boundary layer wind tunnel. The characteristics of the airflow at and in the vicinity of the site of the Bolund Experiment were clarified. The study also examined the prediction accuracy of the LES turbulence simulations (CFD). The values of the streamwise (x) wind velocity predicted by the CFD model were generally in good agreement with those from the wind tunnel experiment at all points and heights examined, demonstrating the validity of CFD based on LES turbulence modeling.


[1]  Berg, J., Mann, J., Bechmann, A., Courtney, M.S. and Jorgensen, H.E. (2011) The Bolund Experiment, Part I: Flow over a Steep, Three-Dimensional Hill. Boundary-Layer Meteorology, 141, 219-243.
[2]  Bechmann, A., Sorensen, N.N., Berg, J., Mann, J. and Réthoré, P.-E. (2011) The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models. Boundary-Layer Meteorology, 141, 245-271.
[3]  Prospathopoulos, J.M., Politis, E.S. and Chaviaropoulos, P.K. (2012) Application of a 3D RANS Solver on the Complex Hill of Bolund and Assessment of the Wind Flow Predictions. Journal of Wind Engineering and Industrial Aerodynamics, 107-108, 149-159.
[4]  Diebold, M., Higgins, C., Fang, J., Bechmann, A. and Parlange, M.B. (2013) Flow over Hills: A Large-Eddy Simulation of the Bolund Case. Boundary-Layer Meteorology, 148, 177-194.
[5]  Yeow, T.S., Cuerva, A., Conan, B. and Pérez-álvarez, J. (2014) Wind Tunnel Analysis of the Detachment Bubble on Bolund Island. Journal of Physics: Conference Series, 555, Article ID: 012021.
[6]  Yeow, T.S., Cuerva-Tejero, A. and Pérez-álvarez, J. (2015) Reproducing the Bolund Experiment in Wind Tunnel. Wind Energy, 18, 153-169.
[7]  Chaudhari, A., Hellsten, A. and Hamalainen, J. (2016) Full-Scale Experimental Validation of Large-Eddy Simulation of Wind Flows over Complex Terrain: The Bolund Hill. Advances in Meteorology, 2016, Article ID: 9232759.
[8]  Conan, B., Chaudhari, A., Aubrun, S., van Beeck, J., Hamalainen, J. and Hellsten, A. (2016) Experimental and Numerical Modelling of Flow over Complex Terrain: The Bolund Hill. Boundary-Layer Meteorology, 158, 183-208.
[9]  Uchida, T. and Ohya, Y. (2008) Micro-Siting Technique for Wind Turbine Generators by Using Large-Eddy Simulation. Journal of Wind Engineering & Industrial Aerodynamics, 96, 2121-2138.
[10]  Watanabe, K., Ohya, Y., Uchida, T. and Nagai, T. (2017) Numerical Prediction and Field Verification Test of Wind-Power Generation Potential in Nearshore Area Using a Moored Floating Platform. Journal of Flow Control, Measurement & Visualization, 5, 15.
[11]  Watanabe, F. and Uchida, T. (2015) Micro-Siting of Wind Turbine in Complex Terrain: Simplified Fatigue Life Prediction of Main Bearing in Direct Drive Wind Turbines. Wind Engineering, 39, 349-368.
[12]  Uchida, T., Ohya, Y. and Sugitani, K. (2011) Comparisons between the Wake of a Wind Turbine Generator Operated at Optimal Tip Speed Ratio and the Wake of a Stationary Disk. Modelling and Simulation in Engineering, 2011, Article ID: 749421.
[13]  Uchida, T., Maruyama, T. and Ohya, Y. (2011) New Evaluation Technique for WTG Design Wind Speed using a CFD-Model-Based Unsteady Flow Simulation with Wind Direction Changes. Modelling and Simulation in Engineering, 2011, Article ID: 941870.
[14]  Uchida, T. and Ohya, Y. (2011) Latest Developments in Numerical Wind Synopsis Prediction Using the RIAM-Compact CFD Model-Design Wind Speed Evaluation and Wind Risk (Terrain-Induced Turbulence) Diagnostics in Japan. Energies, 4, 458-474.
[15]  Uchida, T. and Ohya, Y. (2008) Verification of the Prediction Accuracy of Annual Energy Output at Noma Wind Park by the Non-Stationary and Non-Linear Wind Synopsis Simulator, RIAM-COMPACT. Journal of Fluid Science and Technology, 3, 344-358.
[16]  Uchida, T. and Ohya, Y. (2006) Application of LES Technique to Diagnosis of Wind Farm by Using High Resolution Elevation Data. JSME International Journal, 49, 567-575.
[17]  Uchida, T. and Ohya, Y. (2003) Large-Eddy Simulation of Turbulent Airflow over Complex Terrain. Journal of Wind Engineering & Industrial Aerodynamics, 91, 219-229.
[18]  Uchida, T. and Ohya, Y. (1999) Numerical Simulation of Atmospheric Flow over Complex Terrain. Journal of Wind Engineering & Industrial Aerodynamics, 81, 283-293.
[19]  Kim, J. and Moin, P. (1985) Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations. Journal of Computational Physics, 59, 308-323.
[20]  Kajishima, T. (1994) Upstream-Shifted Interpolation Method for Numerical Simulation of Incompressible Flows. Bulletin of JSME, 60, 3319-3326. (In Japanese)
[21]  Kawamura, T., Takami, H. and Kuwahara, K. (1986) Computation of High Reynolds Number Flow around a Circular Cylinder with Surface Roughness. Fluid Dynamics Research, 1, 145-162.
[22]  Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, Part 1, Basic Experiments. Monthly Weather Review, 91, 99-164.<0099:GCEWTP>2.3.CO;2


comments powered by Disqus