All Title Author
Keywords Abstract

Biodiversity of Bacillus thuringiensis Strains and Their Cry Genes in Ecosystems of Kyrgyzstan

DOI: 10.4236/abb.2018.93009, PP. 107-126

Keywords: Bacillus thuringiensis Serotypes in Nature, 16S rRNA Gene Diversity of Bt Isolates, Cry Gene Diversity

Full-Text   Cite this paper   Add to My Lib


The present study aims to isolate the unknown and known serotypes of Bacilllus thuringiensis (Bt) from natural objects in Kyrgyzstan. A total of 83 Bt strains were isolated from natural substrates, of which 30% were taken from the soil and litter samples, 69.7% from dead insects and about 0.3% from slugs. Serological examination revealed that such subspecies as var. thuringiensis (H-1), var. alesti (H-3), var. sotto (H-4a4b) and var. entomocidus (H-6) predominated in the upper horizon of soils in all climatic zones. In the dead insects such species as subsp. thuringiensis, subsp. galleria, subsp. sotto, subsp. kurstaki, subsp. Aizawai and subsp. Entomocidus dominated. A set of Bt strains isolated from insects and soil samples, selected from different ecosystems in Kyrgyzstan was molecular taxonomically characterized using the pycA gene as marker for phylogenetic reconstruction. Within the Bacillus cereus sensu lato species complex, all Kyrgyz isolates were shown to belong to the B. cereus subspecies thuringiensis. Most isolates were assigned to the lineage Bt tolworthi, with two isolates each belonging to the lineages Bt kurstaki and Bt sotto. A high degree of cry gene diversity was demonstrated in the set of Bt isolates, with several gene copies simultaneously present in a single strain; a particularly conspicuous trait was the frequent combination of Lepidopteran-specific cryI with Dipteran-specific cryIV genes in the same Bt isolate.


[1]  Konecka, E., Kaznowski, A., Ziemnicka, J. and Ziemnicki, K. (2007) Molecular and Phenotypic Characterization of Bacillus thuringiensis Isolated during Epizootics in Cydia pomonella L. Journal of Invertebrate Pathology, 94, 56-63.
[2]  Zhong, C., Ellar, D.J., Bisho, A., Johnson C., Lin, S. and Hart, E.R. (2000) Characterization of B. thuringiensis d-endotoxin which Is Toxic to Insects in Three Orders. Journal of Invertebrate Pathology, 76, 131-139.
[3]  Vidyarthi, A.S., Tyagi, D., Valero, J.R. and Surampalli, R.Y. (2002) Studies on the Production of B. thuringiensis Based Biopesticides Using Wastewater Sludge as a Raw Material. Water Research, 36, 4850-4860.
[4]  Ozturk, F., Acik, L., Ayvaz, A., Bozdogan, B. and Suludere, Z. (2008) Isolation and Characterization of Native Bacillus thuringiensis Strains from Soil and Testing the Bioactivity of Isolates against Ephestia kuehniella zeller (Lepidoptera: Pyralidae) larvae. Turkish Journal of Biochemistry, 33, 202-208.
[5]  Valicente, F.H., de Toledo Picoli, E.A., de Vasconcelos, M.J.V., Carneiro, N.P., Carneiro, A.A., Guimara~es, C.T. and Lana, U.G. (2010) Molecular Characterization and Distribution of Bacillus thuringiensis cry1 Genes from Brazilian Strains Effective against the Fall Armyworm, Spodoptera frugiperda. Biological Control, 53, 360-366.
[6]  de Escudero, I.R., Banyuls, N., Bel, Y., Maeztu, M., Escriche, B., Mun~oz, D., Caballero, P. and Ferre, J. (2014) A Screening of Five Bacillus thuringiensis Vip3A Proteins for Their Activity against lepidopteran Pests. Journal of Invertebrate Pathology, 117, 51-55.
[7]  Shishir, A., Roy, A., Islam, N., Rahman, A., Khan, S.N. and Hoq, M.M. (2014) Abundance and Diversity of Bacillus thuringiensis in Bangladesh and Their Cry Genes Profile. Frontiers in Environmental Science, 2, 1-10.
[8]  Neethu, K.B., Priji, P., Unni, K.N., Sajith, S., Sreedevi, S., Ramani, N., et al. (2015) New Bacillus thuringiensis Strain Isolated from the Gut of Malabari Goat Is Effective against Tetranychus macfarlanei. Journal of Applied Entomology, 140, 187-198.
[9]  Bravo, A., Gill, S.S. and Sobero, N.M. (2007) Mode of Action of Bacillus thuringiensis Cry and Cyt Toxins and Their Potential for Insect Control. Toxicon, 49, 423-435.
[10]  Brar, S., Verma, M., Tyagi, R., Surampalli, R., Bernabé, S. and Valéro, J. (2007) Bacillus thuringiensis Proteases: Production and Role in Growth, Sporulation and Synergism. Process Biochemistry, 42, 773-790.
[11]  Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., et al. (2016) Bacillus thuringiensis Toxin Nomenclature.
[12]  Romeis, J., Meissle, M. and Bigler, F. (2006) Transgenic Crops Expressing Bacillus thuringiensis Toxins and Biological Control. Nature Biotechnology, 24, 63-71.
[13]  Gassmann, A., Carrière, Y. and Tabashnik, E. (2009) Fitness Costs of Insect Resistance to Bacillus thuringiensis. Annual Review of Entomology, 54, 147-163.
[14]  James, C. (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA Briefs 46, Ithaca.
[15]  Berón, C. and Salerno, G. (2006) Characterization of Bacillus thuringiensis Isolates from Argentina That Are Potentially Useful in Insect Pest Control. BioControl, 51, 779-794.
[16]  Sumerford, D.V., Head, G.P., Shelton, A., Greenplate, J. and Moar, W. (2013) Field Evolved Resistance: Assessing the Problem and Ways to Move Forward. Journal of Economic Entomology, 106, 1525-1534.
[17]  Pardo-Lopez, L., Soberon, M. and Bravo, A. (2013) Bacillus thuringiensis Insecticidal Three Domain Cry Toxins: Mode of Action, Insect Resistance and Consequences for Crop Protection. FEMS Microbiology Reviews, 37, 3-22.
[18]  Gassmann, A.J., Petzold-Maxwell, J.L., Clifton, E.H., Dunbar, M.W., Hoffmann, A.M., Ingber, D.A., et al. (2014) Field-Evolved Resistance by Western Corn Rootworm to Multiple Bacillus thuringiensis Toxins in Transgenic Maize. PNAS, 111, 5141-5146.
[19]  Alvarez, A., Virla, E., Pera, L. and Baigorí, M. (2011) Biological Characterization of Two Bacillus thuringiensis Strains Toxic against Spodoptera frugiperda. World Journal of Microbiology and Biotechnology, 27, 2343-2349.
[20]  Meadows, M.P., Ellar, D.J., Butt, J., Jarrett, P. and Burges, H.D. (1992) Distributors, Frequency and Diversity of B. thuringiensis in an Annual Food Mill. Applied and Environmental Microbiology, 58, 1344-1350.
[21]  Balykin, A.V. and Uzdenov, U.B. (1981) On the Issue of Eco-Geographical Distribution and New Sources of Isolation of Bacillus thuringiensis in Kyrgyzstan. In: Crystal-Forming Microorganisms and Prospects of Their Use in Poultry Farming, Collection of Scientific Papers, Frunze, 37-44. (In Russia)
[22]  Travers, R.S., Martin, P.A.W. and Reichelderfer, C.F. (1987) Selective Process for Efficient Isolation of Bacillus spp. Applied and Environmental Microbiology, 53, 1263-1266.
[23]  Alef, K. and Nannipieri, P. (1995) Methods of Soil Microbiology and Biochemistry. Academic Press, London, 300.
[24]  Guidelines of Agricultural Academy and All-Union Scientific Research Institute of Plant Protection (1987) Isolation and Selection of Highly Virulent Cultures of Bacillus thuringiensis var. galleriae L. 21. (In Russia)
[25]  Garrity, G. (2006) Bergey’s Manual of Determinative Bacteriology. 10th Edition, Blackwell Publishing Ltd., Hoboken, 787.
[26]  De Barjac, H. and Frachon, E. (1990) Classification of Bacillus thuringiensis Strains. Entomophaga, 35, 233-240.
[27]  Frachon, E. and Frachon, T. (1997) Identification, Isolation, Culture and Preservation of Entamopathogenic Bacteria. In: Lacey, L.H., Ed., Biological Techniques, Manual of Techniques in Insect Pathology, Academic Press, London, 55-72.
[28]  Lecadet, M.M., Frachon, E., Dumanoir, V.C., Ripouteau, H., Hamon, S., Laurent, P. and Thiery, I. (1999) Updating the H-Antigen Classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86, 660-672.
[29]  De Barjac, H. and Bonnefoi, A. (1962) Essai de classification biochimique se sérologique de 24 souches de Bacillus du type B. thuringiensis. Entomophaga, 7, 5-31.
[30]  Ohba, M., Wasano, N. and Mizuki, E. (2000) Bacillus thuringiensis Soil Populations Naturally Occurring in the Ryukyus, a Subtropic Region of Japan. Microbiological Research, 155, 17-22.
[31]  Priest, F.G., Barker, M., Baillie, L.W.J., Holmes, E.C. and Maiden, M.C.J. (2004) Population Structure and Evolution of the Bacillus cereus Group. Journal of Bacteriology, 186, 7959-7970.
[32]  Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
[33]  Laurival, A., Vilas-Bôas Gislayne, F.L.T., Vilas-Bôas Halha, O., SaridakisManoel Victor, F. and Lemos Didier Lereclu Olivia, M.N. (2000) Survival and Conjugation of Bacillus thuringiensis in a Soil Microcosm. FEMS Microbiology Ecology, 31, 255-259.
[34]  Ejiofor, A.O. and Johnson, T. (2002) Physiological and Molecular Detection of Crystalliferous Bacillus thuringiensis Strains from Habitats in the South Central United States. Journal of Industrial Microbiology and Biotechnology, 28, 284-290.
[35]  Soufiane, B. and Cote, J.C. (2009) Discrimination among Bacillus thuringiensis H Serotypes, Serovars and Strains Based on 16S rRNA, gyrB and aroE Gene Sequence Analyses. Antonie Van Leeuwenhoek, 95, 33-45.
[36]  Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., et al. (1998) Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins. Microbiology and Molecular Biology Reviews, 62, 807-813.
[37]  Jolley, K.A. and Maiden, M.C.J. (2010) Bacillus cereus Multi Locus Sequence Typing Database.
[38]  Letowski, J., Bravo, A., Brousseau, R. and Masson, L. (2005) Assessment of cry1 Gene Contents of Bacillus thuringiensis Strains by Use of DNA Microarrays. Applied and Environmental Microbiology, 71, 5391-5398.
[39]  Nicholson, W.L. (2002) Roles of Bacillus Endospores in the Environment. Cellular and Molecular Life Sciences, 59, 410-416.


comments powered by Disqus