Despite hydroformylation being a very efficient method for the transformation of alkenes, it is not commonly employed in laboratories owing to the flammable/toxic nature of hydrogen and carbon monoxide gases and the necessity of high-pressure equipment in a batch system. Flow chemistry often raises the safety profiles against high-pressure and toxic gases because the diameter of the flow reactor is small. Herein, we show that aliphatic alkenes can be safely hydroformylated in a flow reactor. In our flow method, although the target hydroformylated product was obtained in a low yield (19%), toxic gases were safely treated using a flow reactor. Better yields could possibly be achieved by recycling of the unreacted alkene.
References
[1]
Speight, J.G. (2014) The Chemistry and Technology of Petroleum. 5th Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL.
[2]
Adkins, H. and Krsek, G. (1949) Hydroformylation of Unsaturated Compounds with a Cobalt Carbonyl Catalyst. Journal of the American Chemical Society, 71, 3051-3055. https://doi.org/10.1021/ja01177a032
[3]
Evans, D., Osborn, J.A. and Wilkinson, G. (1968) Hydroformylation of Alkenes by Use of Rhodium Complex Catalysts. Journal of the Chemical Society A, 33, 3133-3142. https://doi.org/10.1039/j19680003133
[4]
Breit, B. (2003) Synthetic Aspects of Stereoselective Hydroformylation. Accounts of Chemical Research, 36, 264-275. https://doi.org/10.1021/ar0200596
[5]
Franke, R., Selent, D. and Borner, A. (2012) Applied Hydroformylation. Chemical Reviews, 112, 5675-5732. https://doi.org/10.1021/cr3001803
[6]
Smidt, J., Hafner, W., Jira, R., Sieber, R., Sedlmeier, J. and Sabel, A. (1962) The Oxidation of Olefins with Palladium Chloride Catalysts. Angewandte Chemie International Edition, 1, 80-88. https://doi.org/10.1002/anie.196200801
[7]
Tsuji, J. (1984) Synthetic Applications of the Palladium-Catalyzed Oxidation of Olefins to Ketones. Synthesis, 1984, 369-384. https://doi.org/10.1055/s-1984-30848
[8]
Weissermel, K. and Arpe, H.-J. (1988) Industrielle Organische Chemie. VCH Publishers, Weinheim.
[9]
Takahashi, T., Machida, K., Kido, Y., Nagashima, K., Ebata, S. and Doi, T. (1997) Hydroformylation of ω-Functionalized 1,1-Disubstituted Alkenes and Its Use Toward the Synthesis of (±)Muscone. Chemistry Letters, 26, 1291-1292. https://doi.org/10.1246/cl.1997.1291
[10]
Eilbracht, P., Barfacker, L., Buss, C., Hollmann, C., Kitsos-Rzychon, B.E., Kranemann, C.L., Rische, T., Roggenbuck, R. and Schmidt, A. (1999) Tandem Reaction Sequences under Hydroformylation Conditions: New Synthetic Applications of Transition Metal Catalysis. Chemical Reviews, 99, 3329-3365. https://doi.org/10.1021/cr970413r
[11]
Liu, P. and Jacobsen, E.N. (2001) Total Synthesis of (+)-Ambruticin. Journal of the American Chemical Society, 123, 10772-10773. https://doi.org/10.1021/ja016893s
[12]
Airiau, E., Spangenberg, T., Girard, N., Breit, B. and Mann, A. (2010) Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation. Organic Letters, 12, 528-531. https://doi.org/10.1021/ol902718q
[13]
McDonald, R.I., Wong, G.W., Neupane, R.P., Stahl, S.S. and Landis, C.R. (2010) Enantioselective Hydroformylation of N-Vinyl Carboxamides, Allyl Carbamates, and Allyl Ethers Using Chiral Diazaphospholane Ligands. Journal of the American Chemical Society, 132, 14027-14029. https://doi.org/10.1021/ja106674n
[14]
Chiou, W.-H., Mizutani, N. and Ojima, I. (2007) Highly Efficient Synthesis of Azabicyclo[x.y.0]alkane Amino Acids and Congeners by Means of Rh-Catalyzed Cyclohydrocarbonylation. Journal of Organic Chemistry, 72, 1871-1882. https://doi.org/10.1021/jo061692y
[15]
Campi, E.M., Jackson, W.R. and Nilsson, Y. (1991) A Hydroformylation Route to β-Substituted Pyrroles. Tetrahedron Letters, 32, 1093-1094. https://doi.org/10.1016/S0040-4039(00)74496-0
[16]
Wuts, P.G.M., Obrzut, M.L. and Thompson, P.A. (1984) Hydroformylation as a Simple and Efficient One Carbon Homologation of Homoallylic Alcohols. Synthesis of Prelog-Djerassi Lactone. Tetrahedron Letters, 25, 4051-4054. https://doi.org/10.1016/S0040-4039(01)90179-0
[17]
Yoshida, J., Takahashi, Y. and Nagaki, A. (2013) Flash Chemistry: Flow Chemistry That Cannot Be Done in Batch. Chemical Communications, 49, 9896-9904. https://doi.org/10.1039/C3CC44709J
[18]
Movsisyan, M., Delbeke, E.I.P., Berton, J.K.E.T., Battilocchio, C., Ley, S.V. and Stevens, C.V. (2016) Taming Hazardous Chemistry by Continuous Flow Technology. Chemical Society Reviews, 45, 4892-4928. https://doi.org/10.1039/C5CS00902B
[19]
Fuse, S., Mifune, Y. and Takahashi, T. (2014) Efficient Amide Bond Formation through a Rapid and Strong Activation of Carboxylic Acids in a Microflow Reactor. Angewandte Chemie International Edition, 53, 851-855. https://doi.org/10.1002/anie.201307987
[20]
Fuse, S., Tanabe, N., Yoshida, M., Yoshida, H., Doi, T. and Takahashi, T. (2010) Continuous-Flow Synthesis of Vitamin D3. Chemical Communications, 46, 8722-8724. https://doi.org/10.1039/c0cc02239j
[21]
Mallia, C.J. and Baxendale, I.R. (2016) The Use of Gases in Flow Synthesis. Organic Process Research & Development, 20, 327-360. https://doi.org/10.1021/acs.oprd.5b00222
[22]
Wegner, J., Ceylan, S. and Kirschning, A. (2011) Ten Key Issues in Modern Flow Chemistry. Chemical Communications, 47, 4583-4592. https://doi.org/10.1039/c0cc05060a
[23]
Kasinathan, S., Bourne, S., Tolstoy, P., Koos, P., O’Brien, M., Bates, R.W., Baxendale, I.R. and Ley, S.V. (2011) Syngas-Mediated C–C Bond Formation in Flow: Selective Rhodium-Catalysed Hydroformylation of Styrenes. Synlett, 2011, 2648-2651. https://doi.org/10.1055/s-0031-1289292
[24]
Koos, P., Gross, U., Polyzos, A., O’Brien, M., Baxendale, I.R. and Ley, S.V. (2011) Teflon AF-2400 Mediated Gas-Liquid Contact in Continuous Flow Methoxycarbonylations and In-Line FTIR Measurement of CO Concentration. Organic & Biomolecular Chemistry, 9, 6903-6908. https://doi.org/10.1039/c1ob06017a
[25]
Polyzos, A., O’Brien, M., Peterson, T.P., Baxendale, I.R. and Ley, S.V. (2011) The Continuous-Flow Synthesis of Carboxylic Acids Using CO2 in a Tube-In-Tube Gas Permeable Membrane Reactor. Angewandte Chemie International Edition, 50, 1190-1193. https://doi.org/10.1002/anie.201006618
[26]
O’Brien, M., Baxendale, I.R. and Ley, S.V. (2010) Flow Ozonolysis Using a Semipermeable Teflon AF-2400 Membrane To Effect Gas-Liquid Contact. Organic Letters, 12, 1596-1598. https://doi.org/10.1021/ol100322t
[27]
O’Brien, M., Taylor, M., Polyzos, A., Baxendale, I.R. and Ley, S.V. (2011) Hydrogenation in Flow: Homogeneous and Heterogeneous Catalysis Using Teflon AF-2400 to Effect Gas-Liquid Contact at Elevated Pressure. Chemical Science, 2, 1250-1257. https://doi.org/10.1039/c1sc00055a
[28]
Kranenburg, M., van der Burgt, Y.E.M., Kamer, P.C.J., van Leeuwen, P.W.N.M., Goubitz, K. and Fraanje, J. (1995) New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation. Organometallics, 14, 3081-3089. https://doi.org/10.1021/om00006a057