All Title Author
Keywords Abstract


SCFA Profile of Rice RS Fermentation by Colonic Microbiota, Clostridium butyricum BCC B2571, and Eubacterium rectale DSM 17629

DOI: 10.4236/abb.2018.92008, PP. 90-106

Keywords: Resistant Starch, Colonic Microbiota, Clostridium butyricum BCC-B2571, Eubacterium rectale DSM 17629, SCFA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resistant starch type 3 (RS3) produced from high amylose food sources through retrogradation or enzymatic process is known to have physiological function as dietary fiber. Fermentation of RS3 by colonic microorganisms produced SCFA (acetate, propionate, and butyrate), maintained the health of colon, balance of gut microbiota, preventing inflammatory bowel diseases (IBD) and colon cancer. RS3 in this study was produced from IR-42 and Inpari-16 broken rice by enzymatic treatment (combination of amylase-pullulanase). The Resistant Starch was fermented for 12 and 24 h by colonic microbiota (extracted from healthy human subject), Clostiridium butyricum BCC-B2571, or Eubacterium rectale DSM 17629. SCFA produced was analyzed by gas chromatography. Treatment by amylase-pullulanase combination was advantageous to increase their RS3 content. The result showed that after enzymatic process, the RS3 content of IR-42 (41.13%) was not significantly different (p < 0.05) from that of Inpari-16 (37.70%). High concentration of acetate (82.5 mM) and propionate (7.5 mM) were produced by colonic microbiota after 12 h fermentation and best concentration of butyrate (6.8 mM) was produced by colonic microbiota after 24 h fermentation. It is clear that utilization of colonic microbiota rather than single strain was better in the production of SCFA.

References

[1]  Carabotti, M., Scirocco, A., Maselli, M.A. and Severi, C. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
[2]  Galisteo, M., Duarte, J. and Zarzuelo, A. (2008) Effect of Dietary Fibers on Disturbances Clustered in the Metabolic Syndrome. Journal of Nutritional Biochemistry, 19, 71-84.
https://doi.org/10.1016/j.jnutbio.2007.02.009
[3]  den Besten, G., van Eunen, K., Groen, A.K., Venema, K., Reijingoud, D.J. and Bakker, B.M. (2013) The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. Journal of Lipid Research, 54, 2325-2340.
https://doi.org/10.1194/jlr.R036012
[4]  Cancer Facts & Figures: Worldwide Data. World Cancer Research Fund International.
http://www.wcrf.org/int/cancer-facts-figures/worldwide-data
[5]  Colorectal Cancer Facts & Figures 2014-2016 (2014) American Cancer Society. Atlanta, Georgia.
[6]  Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K. and Bultman, S.J. (2011) The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon. Cell Metabolism, 13, 517-526.
https://doi.org/10.1016/j.cmet.2011.02.018
[7]  Harig, J.M., Soergel, K.H., Komorowski, R.A. and Wood, C.M. (1989) Treatment of Diversion Colitis with Short-Chain-Fatty Acid Irrigation. The New England Journalof Medicine, 320, 23-28.
https://doi.org/10.1056/NEJM198901053200105
[8]  Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., Taylor, T.D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H. (2011) Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature, 469, 543-547.
https://doi.org/10.1038/nature09646
[9]  Wang, X., Conway, P.L., Brown, I.L. and Evans, A.J. (1999) In Vitro Utilization of Amylopectin and High-Amylose Maize (Amilomaize) Starch Granules by Human Colonic Bacteria. Applied and Environmental Microbiology, 65, 4848-4854.
[10]  Statistics Indonesia (2014) Production of Paddy.
https://www.bps.go.id
[11]  Purwani, E.Y., Purwadaria, T. and Suhartono, M.T. (2012) Fermentation RS3 Derived from Sago and Rice Starch with Clostridium butyricum BCC-B2571 or Eubacterium Rectale DSM 17629. Anaerobe, 8, 55-61.
https://doi.org/10.1016/j.anaerobe.2011.09.007
[12]  Tan, S.Y. (2003) Resistant Rice Starch Development. M.Sc. Thesis, Louisiana State University, Louisiana.
[13]  Guraya, H.S., James, C. and Champagne, E.T. (2001) Effect of Cooling, and Freezing on the Digestibility of Debranched Rice Starch and Physical Properties of the Resulting Material. Starch, 53, 64-74.
https://doi.org/10.1002/1521-379X(200102)53:2<64::AID-STAR64>3.0.CO;2-R
[14]  Kim, K.W., Chung, M.K., Kang, N.E., Kim, M.H. and Park, O.J. (2003) Effect of Resistant Starch from Corn or Rice on Glucose Control, Colonic Events, and Blood Lipid Concentrations in Streptozotocin-Induced Diabetic Rats. The Journal of Nutritional Biochemistry, 14, 166-172.
https://doi.org/10.1016/S0955-2863(02)00281-4
[15]  Zhao, X.H. and Lin, Y. (2009) Resistantstarch Prepared from High-Amylose Maize Starch Which Citricacid Hydrolysis and Its Simulated Fermentation in Vitro. European Food Research and Technology, 228, 1015-1021.
https://doi.org/10.1007/s00217-009-1012-5
[16]  Sharp, R. and Macfarlane, G.T. (2000) Chemostat Enrichments of Human Feces with Resistant Starch Are Selective for Adherent Butyrate-Producing Clostridia at High Dilution Rate. Applied and Environmental Microbiology, 66, 4212-4221.
https://doi.org/10.1128/AEM.66.10.4212-4221.2000
[17]  Yang, J., Martínez, I., Walter, J., Keshavarzian, A. and Rose, D.J. (2013) In Vitro Characterization of the Impact of Selected Dietary Fibers on Fecal Microbiota Composition and Short Chain Fatty Acid Production. Anaerobe, 23, 74-81.
https://doi.org/10.1016/j.anaerobe.2013.06.012
[18]  Wang, L. and Wang, Y.J. (2004) Rice Starch Isolation by Neutral Protease and High-Intensity Ultrasound. Journal of Cereal Science, 39, 291-296.
https://doi.org/10.1016/j.jcs.2003.11.002
[19]  AOAC (2006) Official Methods Analysis. Association of Official Analytical Chemistry, Washington DC.
[20]  Juliano, B.O. (1972) A Simplified Assay for Milled-Rice Amylose. Cereal Science Today, 16, 334-340.
[21]  Goni, I., Garcia-Diz, L., Manas, E. and Saura-Calixto, F. (1996) Analysis of Resistant Starch: A Method for Foods and Food Products. Food Chemistry, 56, 445-449.
https://doi.org/10.1016/0308-8146(95)00222-7
[22]  Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colometric Method for Determination of Sugar and Related Substances. Analytical Chemistry, 28, 350-356.
https://doi.org/10.1021/ac60111a017
[23]  Panlasigui, L.N., Thompson, L.U., Juliano, B.O., Perez, C.M., Yiu, S.H. and Greenberg, G.R. (1991) Rice Varieties with Similar Amylose Content Differ in Starch Digestibility and Glycemic Response in Humans. The American Journal of Clinical Nutrition, 54, 871-877.
https://doi.org/10.1093/ajcn/54.5.871
[24]  Indonesia Center for Rice Research.
https://bbpadi.litbang.pertanian.go.id
[25]  Faridah, D.N., Fardiaz, D., Andarwulan, N. and Sunarti, T.C. (2010) Perubahan struktur pati garut (Maranta arundinaceae) sebagai akibat modifikasi hidrolisis asam, pemotongan titik cabang dan siklus pemanasan-pendinginan. Jurnal Teknologi Industri Pangan, 21, 135-142.
[26]  May, T., Mackie, R.I., Fahey, G.C., Cremin, J.C. and Garleb, K.A. (1994) Effect of Fiber Source on Short-Chain Fatty Acid Production and on the Growth and Toxin Production by Clostridium difficile. Scandinavian Journal of Gastroenterology, 29, 916-922.
https://doi.org/10.3109/00365529409094863
[27]  Rolfe, R.D. (1984) Role of Volatile Fatty Acids in Colonization Resistance to Clostridium difficile. Infection and Immunity, 45, 185-191.
[28]  Lesmes, U., Beards, E.J., Gibson, G.R., Tuohy, K.K. and Shimoni, E. (2008) Effects of Resistant Starch Type III Polymorphs on Human Colon Microbiota and Short Chain Fatty Acids in Human Gut Models. Journal of Agricultural and Food Chemistry, 56, 5415-5421.
https://doi.org/10.1021/jf800284d
[29]  Waldecker, M., Kautenburger, T., Daumann, H., Veeriah, S., Will, F., Dietrich, H., Pool-Zobel, B.L. and Schrenk, D. (2008) Histone-Deacetylase Inhibition and Butyrate Formation: Fecal Slurry Incubations with Apple Pectin and Apple Juice Extracts. Nutrition, 24, 366-374.
https://doi.org/10.1016/j.nut.2007.12.013
[30]  Miller, T.L. and Wolin, M.J. (1996) Pathways of Acetate, Propionate, and Butyrate Formation by the Human Fecal Microbial Flora. Applied and Environmental Microbiology, 62, 1589-1592.
[31]  Louis, P., Duncan, S.H., McCrae, S.I., Miller, J. and Jackson, M.S. (2004) Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. Journal of Bacteriology, 186, 2099-2106.
https://doi.org/10.1128/JB.186.7.2099-2106.2004
[32]  Duncan, S.H. and Flint, H.J. (2008) Proposal of a Neotype Strain (A1-86) for Eubacterium rectale. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 58, 1735-1736.
https://doi.org/10.1099/ijs.0.2008/004580-0
[33]  Lecerf, J.M., Depeint, F., Clerc, E., Dugenet, Y., Niamba, C.N., Rhazi, L., Cayzeele, A., Abdelnour, G., Jaruga, A., Younes, H., Jacobs, H., Lambrey, G., Abdelnour, A.M. and Pouillart, P.R. (2012) Xylo-Oligosaccharide (XOS) Incombination with Inulin Modulates both the Intestinal Environment and Immune Status in Healthy Subjects, While XOS Alone Only Shows Prebiotics Properties. British Journal of Nutrition, 108, 1847-1858.
https://doi.org/10.1017/S0007114511007252
[34]  Majid, H.A., Emery, P.W. and Whelan, K. (2011) Faecal Microbiota and Short-Chain Fatty Acids in Patients Receiving Enteral Nutrition with Standard or Fructo-Oligosaccharides and Fibre-Enriched Formulas. Journal of Human Nutrition and Dietetics, 24, 260-268.
https://doi.org/10.1111/j.1365-277X.2011.01154.x
[35]  Halmos, E.P., Christophersen, C.T., Bird, A.R., Shepherd, S.J., Gibson, P.R. and Muir, J.G. (2015) Diets That Differ in Their FODMAP Content Alter the Colonic Luminal Microenvironment. Gut, 64, 93-100.
https://doi.org/10.1136/gutjnl-2014-307264
[36]  Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swan, J.R., Gibson, G., Viardot, A., Morrison, D., Thomas, E.L. and Bell, J.D. (2014) The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nature Communication, 5, 1-11.
https://doi.org/10.1038/ncomms4611
[37]  Tedelind, S., Westberg, F., Kjerrulf, M. and Vidal, A. (2007) Anti-Inflammatory Properties of the Short-Chain Fatty Acids Acetate and Propionate: A Study with Relevance to Inflammatory Bowel Disease. World Journal of Gastroenterology, 13, 2826-2832.
https://doi.org/10.3748/wjg.v13.i20.2826
[38]  Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M.A., Motoike, T., Kedzierski, R.M. and Yanagisawa, M. (2004) Short-Chain Fatty Acids Stimulate Leptin Production in Adipocytes through the G Proteincoupled Receptor GPR41. Proceedings of the National Academy od Science of the United State America, 101, 1045-1050.
https://doi.org/10.1073/pnas.2637002100
[39]  Samuel, B.S., Shaito, A., Motoike, T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M. and Gordon, J.I. (2008) Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. Proceedings of the National Academy od Science of the United State America, 105, 16767-1677.
[40]  Rodwell, V.W., Nordstrom, J.L. and Mitschelen, J.J. (1976) Regulation of HMG-CoA Reductase. Advance in Lipid Research, 14, 1-74.
https://doi.org/10.1016/B978-0-12-024914-5.50008-5
[41]  Bush, R.S. and Milligan, L.P. (1971) Study of the Mechanism of Inhibition of Ketogenesis by Propionate in Bovine Liver. Canadian Journal of Animal Science, 51, 121-127.
https://doi.org/10.4141/cjas71-016
[42]  Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y. and Hodin, R.A. (2002) The Effects of Short-Chain Fatty Acids on Human Colon Cancer Cell Phenotype Are Associated with Histone Hyperacetylation. The Journal of Nutrition, 132, 1012-1017.
https://doi.org/10.1093/jn/132.5.1012
[43]  Jan, G., Belzacq, A.S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G. and Brenner, C. (2002) Propionibacteria Induce Apoptosis of Colorectal Carcinoma Cells via Short-Chain Fatty Acids Acting on Mitochondria. Cell Death Differentiation, 9, 179-188.
https://doi.org/10.1038/sj.cdd.4400935
[44]  Zapolska-Downar, D. and Naruszewicz, M. (2009) Propionate Reduces the Cytokine-Induced VCAM-1 and ICAM-1 Expression by Inhibiting Nuclear Factor-Kappa B (NF-kappaB) Activation. Journal of Physiology and Pharmacology, 60, 123-131.
[45]  Al-Lahham, S.H., Roelofsen, H., Priebe, M., Weening, D., Dijkstra, M., Hoek, A., Rezaee, F., Venema, K. and Vonk, R.J. (2010) Regulation of Adipokine Production in Human Adipose Tissue by Propionic Acid. European Journal of Clinical Investigation, 40, 401-407.
https://doi.org/10.1111/j.1365-2362.2010.02278.x
[46]  Jung, T.H., Park, J.H., Jeon, W.M. and Han, K.S. (2015) Butyrate Modulates Bacterial Adherence on LS174T Human Colorectal Cells by Stimulating Mucin Secretion and MAPK Signaling Pathway. Nutrition Research and Practice, 9, 343-349.
https://doi.org/10.4162/nrp.2015.9.4.343
[47]  Peng, L., Li, Z.R., Green, R.S., Holzman, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619-1625.
https://doi.org/10.3945/jn.109.104638
[48]  Bailón, E., Cueto-Sola, M., Utrilla, P., Rodríguez-Cabezas, M.E., Garrido-Mesa, N., Zarzuelo, A., Xaus, J., Gálvez, J. and Comalada, M. (2010) Butyrate in Vitro Immune-Modulatory Effects Might Be Mediated through a Proliferation-Related Induction of Apoptosis. Immunobiology, 215, 863-873.
https://doi.org/10.1016/j.imbio.2010.01.001
[49]  Lührs, H., Gerke, T., Müller, J.G., Melcher, R., Schauber, J., Boxberge, F., Scheppach, W. and Menzel, T. (2002) Butyrate Inhibits NF-kappaB Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis. Scandinavian Journal of Gastroenterology, 37, 458-466.
https://doi.org/10.1080/003655202317316105
[50]  Fu, H., Shi, Q.Y. and Jin, S. (2004) Effect of Short-Chain Fatty Acids on the Proliferation and Differentiation of the Human Colonic Adenocarcinoma Cell Line Caco-2. Chinese Journal of Digestive Diseases, 5, 115-117.
https://doi.org/10.1111/j.1443-9573.2004.00167.x
[51]  Purwani, E.Y., Iskandriati, D. and Suhartono, M.T. (2012) Fermentation Product of RS3 Inhibited Proliferation and Induced Apoptosis in Colon Cancer Cell HCT-116. Advances in Bioscience and Biotechnology, 3, 1189-1198.
https://doi.org/10.4236/abb.2012.38145
[52]  Ruemmele, F.M., Dionne, S., Qureshi, I.,Sarma, D.S., Levy, E. and Seidman, E.G. (1999) Butyrate Mediates Caco-2 Cell Apoptosis via Up-Regulation of Pro-Apoptotic BAK and Inducing Caspase-3 Mediated Cleavage of poly-(ADP-ribose) Polymerase (PARP). Cell Death and Differentiation, 6, 729-735.
https://doi.org/10.1038/sj.cdd.4400545
[53]  Avivi-Green, C., Polak-Charcon, S., Madar, Z. and Schwartz, B. (2002) Different Molecular Events Account for Butyrate-Induced Apoptosis in Two Human Colon Cancer Cell Lines. The Journal of Nutrition, 132, 1812-1818.
https://doi.org/10.1093/jn/132.7.1812
[54]  Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J. (2008) Review Article: The Role of Butyrate on Colonic Function. Alimentary Pharmacology & Therapeutics, 27, 104-119.
[55]  Louis, P., Hold, G.L. and Flint, H.J. (2014) The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nature Reviews: Microbiology, 12, 661-672.
https://doi.org/10.1038/nrmicro3344

Full-Text

comments powered by Disqus