All Title Author
Keywords Abstract


The Acoustic Sensorimotor Gating Predicts the Efficiency of Hypoxic Preconditioning. Participation of the Cholinergic System in This Phenomenon

DOI: 10.4236/jbise.2018.111002, PP. 10-25

Keywords: Hypoxic Preсonditioning, PPI, Cholinergic Mechanisms, α7 Nicotinic Receptors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Moderate one-off hypobaric hypoxia (HBH) provokes preconditioning and prolongs the resistance (T, the time before apnoea) to severe hypobaric hypoxia (SHBH). Hypoxic preconditioning has therapeutic potential; however, the efficiency of hypoxic preconditioning varies greatly and the methods for its preliminary evaluation are absent in both animals and humans. This rodent study evaluates the dependence of SHBH resistance, initiated by HBH, on the rate of sensorimotor gating estimated in the model of the acoustic startle prepulse inhibition (PPI). A stable negative correlation was found between PPI and T. Low doses of the α7 nicotinic receptor agonist, PNU-282987 (PNU), and more pronouncedly dimethyl sulfoxide (DMSO) (a PNU solvent), inverted the correlation between PPI and T from negative to positive. The DMSO and PNU effects were reversed at PPIs of 0.36 - 0.40 (36% - 40%). DMSO increased T values by 52.2% ± 9.7% in the region of lower HBH efficiency (PPI ≥ 0.40) and reduced it by 35.2% ± 9.3% in the region of higher HBH efficiency (PPI < 0.40). PNU reduced both DMSO effects. The involvement of the central cholinergic mechanisms was substantiated in both DMSO and PNU influences on HBH. In conclusion, 1) PPI can be used to predict the efficiency of hypoxic preconditioning and to study its mechanisms, 2) two opposite cholinergic PPI-related mechanisms participate in the preconditioning effects of HBH, 3) the sensitivity of rats to DMSO and PNU diverges when the PPI is 0.36 - 0.40, and 4) DMSO can enhance resistance to severe hypoxia in the region of the lower preconditioning efficiency of HBH at PPI ≥ 0.4.

References

[1]  Hawaleshka, A. and Jacobsohn, E. (1998) Ischaemic Preconditioning: Mechanisms and Potential Clinical Applications. Canadian Journal of Anesthesia, 45, 670-682.
https://doi.org/10.1007/BF03012100
[2]  Hausenloy, D.J. and Yellon, D.M. (2009) Preconditioning and Postconditioning: Underlying Mechanisms and Clinical Application. Atherosclerosis, 204, 334-341.
https://doi.org/10.1016/j.atherosclerosis.2008.10.029
[3]  Heyman, S.N., Leibowitz, D., Mor-Yosef Levi, I., Liberman, A., Eisenkraft, A., Alcalai, R., Khamaisi, M. and Rosenberger, C. (2016) Adaptive Response to Hypoxia and Remote Ischaemia Pre-Conditioning: A New Hypoxia-Inducible Factors Era in Clinical Medicine. Acta Physiologica (Oxford, England), 216, 395-406.
https://doi.org/10.1111/apha.12613
[4]  Vetrovoy, O.V., Rybnikova, E.A. and Samoilov, M.O. (2017) Cerebral Mechanisms of Hypoxic/Ischemic Postconditioning. Biochemistry (Moscow), 82, 392-400.
https://doi.org/10.1134/S000629791703018X
[5]  Lukyanova, L.D., Germanova, E.L., Tsibina, T.A., Kopaladze, R.A. and Dudchenko, A.M. (2008) Efficiency and Mechanism for Different Regimens of Hypoxic Training: The Possibility of Optimization of Hypoxic Therapy. Pathogenez, 6, 32-36. (In Russian)
[6]  Zakharova, E.I., Dudchenko, A.M. and Germanova, E.L. (2011) Effects of Preconditioning on the Resistance to Acute Hypobaric Hypoxia and Their Correction with Selective Antagonists of Nicotinic Receptors. Bulletin of Experimental Biology and Medicine, 151, 179-182.
https://doi.org/10.1007/s10517-011-1283-2
[7]  Zakharova, E.I. and Dudchenko, A.M. (2016a) Hypoxic Preconditioning Eliminates Differences in the Innate Resistance of Rats to Severe Hypoxia. Journal of Biomedical Science and Engineering, 9, 563-575.
https://doi.org/10.4236/jbise.2016.912049
[8]  Zakharova, E.I. and Dudchenko, A.M. (2016b) Variety of Neuronal Pathways to Achieve the Same Hypoxic Preconditioning Effect. Biochemistry & Physiology, 5, 4.
[9]  Swerdlow, N.R., Braff, D.L. and Geyer, M.A. (2016) Sensorimotor Gating of the Startle Reflex: What We Said 25 Years Ago, What Has Happened Since Then, and What Comes Next. Journal of Psycho-pharmacology, 30, 1072-1081.
https://doi.org/10.1177/0269881116661075
[10]  Geyer, M.A. (2006) The Family of Sensorimotor Gating Disorders: Comorbidities or Diagnostic Overlaps? Neurotoxicity Research, 10, 211-220.
https://doi.org/10.1007/BF03033358
[11]  Swerdlow, N.R., Weber, M., Qu, Y., Light, G.A. and Braff, D.L. (2008) Realistic Expectations of Prepulse Inhibition in Translational Models for Schizophrenia Research. Psychopharmacology, 199, 331-388.
https://doi.org/10.1007/s00213-008-1072-4
[12]  Cadenhead, K.S. (2011) Startle Reactivity and Prepulse Inhibition in Prodromal and Early Psychosis: Effects of Age, Antipsychotics, Tobacco and Cannabis in a Vulnerable Population. Psychiatry Research, 188, 208-216.
https://doi.org/10.1016/j.psychres.2011.04.011
[13]  Storozheva, Z.I., Kirenskaya, A.V., Novototsky-Vlasov, V.Y., Telesheva, K.Y. and Pletnikov, M. (2016) Startle Modification and P50 Gating in Schizophrenia Patients and Controls: Russian Population. The Spanish Journal of Psychology, 19, E8.
https://doi.org/10.1017/sjp.2016.1
[14]  Kirenskaya, A.V., Storozheva, Z.I., Kolobov, V.V. and Sherstnev, V.V. (2015) The Acoustic Startle Response and Polymorphism of the Gene for Catechol-O-Methyltransferase in the Norm and in Schizophrenia. Neurochemical Journal, 9, 76-83.
https://doi.org/10.1134/S1819712415010031
[15]  Samoilov, M.O., Rybnikova, E.A. and Churilova, A.V. (2012) Signal Molecular and Hormonal Mechanisms of Formation of the Hypoxic Preconditioning Protective Effects. Patologicheskaia Fiziologiia I Eksperimental’naia Terapiia, 56, 3-10. (In Russian)
[16]  Roussos, P., Katsel, P., Davis, K.L., Giakoumaki, S.G., Lencz, T., Malhotra, A.K., Siever, L.J., Bitsios, P. and Haroutunian, V. (2013) Convergent Findings for Abnormalities of the NF-κB Signaling Pathway in Schizophrenia. Neuropsychopharmacology, 38, 533-539.
https://doi.org/10.1038/npp.2012.215
[17]  Ridder, D.A., Wenzel, J., Müller, K., Tollner, K., Tong, X.K., Assmann, J.C., Stroobants, S., Weber, T., Niturad, C., Fischer, L., Lembrich, B., Wolburg, H., Grand’Maison, M., Papadopoulos, P., Korpos, E., Truchetet, F., Rades, D., Sorokin, L.M., Schmidt-Supprian, M., Bedell, B.J., Pasparakis, M., Balschun, D., D’Hooge, R., Loscher, W., Hamel, E. and Schwaninger, M. (2015) Brain Endothelial TAK1 and NEMO Safeguard the Neurovascular Unit. The Journal of Experimental Medicine, 212, 1529-1549.
https://doi.org/10.1084/jem.20150165
[18]  van Rensburg, R., Errington, D.R., Ennaceur, A., Lees, G., Obrenovitch, T.P. and Chazot, P.L. (2009) A New Model for the Study of High-K(+)-Induced Preconditioning in Cultured Neurones: Role of N-methyl-d-aspartate and Alpha7-nicotinic Acetylcholine Receptors. Journal of Neuroscience Methods, 177, 311-316.
https://doi.org/10.1016/j.jneumeth.2008.10.012
[19]  Wang, Q., Wang, F., Li, X., Yang, Q., Li, X., Xu, N., Huang, Y., Zhang, Q., Gou, X., Chen, S. and Xiong, L. (2012) Electroacupuncture Pretreatment Attenuates Cerebral Ischemic Injury through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of High-Mobility Group Box 1 Release in Rats. Journal of Neuroinflammation, 26, 9-24.
https://doi.org/10.1186/1742-2094-9-24
[20]  Jiang, Y., Li, L., Tan, X., Liu, B., Zhang, Y. and Li, C. (2015) miR-210 Mediates Vagus Nerve Stimulation-Induced Antioxidant Stress and Anti-Apoptosis Reactions Following Cerebral Ischemia/Reperfusion Injury in Rats. Journal of Neuro-chemistry, 134, 173-181.
https://doi.org/10.1111/jnc.13097
[21]  Sun, F., Johnson, S.R., Jin, K. and Uteshev, V.V. (2017) Boosting Endogenous Resistance of Brain to Ischemia. Molecular Neurobiology, 54, 2045-2059.
https://doi.org/10.1007/s12035-016-9796-3
[22]  Gallowitsch-Puerta, M. and Pavlov, V.A. (2007) Neuro-Immune Interactions via the Cholinergic Anti-Inflammatory Pathway. Life Sciences, 80, 2325-2329.
https://doi.org/10.1016/j.lfs.2007.01.002
[23]  Liu, C. and Su, D. (2012) Nicotinic Acetylcholine Receptor α7 Subunit: A Novel Therapeutic Target for Cardiovascular Diseases. Frontiers in Medicine, 6, 35-40.
https://doi.org/10.1007/s11684-012-0171-0
[24]  Xiong, J., Yuan, Y.J., Xue, F.S., Wang, Q., Cheng, Y., Li, R.P., Liao, X. and Liu, J.H. (2012) Postconditioning with α7 nAChR Agonist Attenuates Systemic Inflammatory Response to Myocardial Ischemia—Reperfusion Injury in Rats. Inflammation, 35, 1357-1364.
https://doi.org/10.1007/s10753-012-9449-2
[25]  Pavlov, V.A. and Tracey, K.J. (2017) Neural Regulation of Immunity: Molecular Mechanisms and Clinical Translation. Nature Neuroscience, 20, 156-166.
https://doi.org/10.1038/nn.4477
[26]  Kelso, M.L. and Oestreich, J.H. (2012) Traumatic Brain Injury: Central and Peripheral Role of α7 Nicotinic Acetylcholine Receptors. Current Drug Targets, 13, 631-636.
https://doi.org/10.2174/138945012800398964
[27]  Jiang, Y., Li, L., Liu, B., Zhang, Y., Chen, Q. and Li, C. (2014) Vagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat. PLoS ONE, 9, e102342.
https://doi.org/10.1371/journal.pone.0102342
[28]  Uteshev, V.V. (2016) Allosteric Modulation of Nicotinic Acetylcholine Receptors: The Concept and Therapeutic Trends. Current Pharmaceutical Design, 22, 1986-1997.
https://doi.org/10.2174/1381612822666160201115341
[29]  Dani, J.A. and Bertrand, D. (2007) Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System. Annual Review of Pharmacology and Toxicology, 47, 699-729.
https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
[30]  Albuquerque, E.X., Pereira, E.F., Alkondon, M. and Rogers, S.W. (2009) Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiological Reviews, 89, 73-120.
https://doi.org/10.1152/physrev.00015.2008
[31]  Lin, H., Hsu, F.C., Baumann, B.H., Coulter, D.A., Anderson, S.A. and Lynch, D.R. (2014) Cortical Parvalbumin GABAergic Deficits with α7 Nicotinic Acetylcholine Receptor Deletion: Implications for Schizophrenia. Molecular and Cellular Neuroscience, 61, 163-175.
https://doi.org/10.1016/j.mcn.2014.06.007
[32]  Koukouli, F. and Maskos, U. (2015) The Multiple Roles of the α7 Nicotinic Acetylcholine Receptor in Modulating Glutamatergic Systems in the Normal and Diseased Nervous System. Biochemical Pharmacology, 97, 378-387. https://doi.org/10.1016/j.bcp.2015.07.018
[33]  Stoiljkovic, M., Kelley, C., Nagy, D., Hurst, R. and Hajós, M. (2016a) Activation of α7 Nicotinic Acetylcholine Receptors Facilitates Long-Term Potentiation at the Hippocampal-Prefrontal Cortex Synapses in Vivo. European Neuropsychopharmacology, 26, 2018-2023.
https://doi.org/10.1016/j.euroneuro.2016.11.003
[34]  Dash, P.K., Zhao, J., Kobori, N., Redell, J.B., Hylin, M.J., Hood, K.N. and Moore, A.N. (2016) Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury. Journal of Neuroscience, 36, 2809-2818.
https://doi.org/10.1523/JNEUROSCI.3197-15.2016
[35]  Fujii, T., Mashimo, M., Moriwaki, Y., Misawa, H., Ono, S., Horiguchi, K. and Kawashima, K. (2017) Expression and Function of the Cholinergic System in Immune Cells. Frontiers in Immunology, 8, 1085.
https://doi.org/10.3389/fimmu.2017.01085
[36]  Hajós, M., Hurst, R.S., Hoffmann, W.E., Krause, M., Wall, T.M., Higdon, N.R. and Groppi, V.E. (2005) The Selective alpha7 Nicotinic Acetylcholine Receptor Agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl] 4-chlorobenzamide hydro-chloride] Enhances GABAergic Synaptic Activity in Brain Slices and Restores Auditory Gating Deficits in Anesthetized Rats. Journal of Pharmacology and Experimental Therapeutics, 312, 1213-1222.
https://doi.org/10.1124/jpet.104.076968
[37]  Walker, D.P., Wishka, D.G., Piotrowski, D.W., Jia, S., Reitz, S.C., Yates, K.M., Myers, J.K., Vetman, T.N., Margolis, B.J., Jacobsen, E.J., Acker, B.A., Groppi, V.E., Wolfe, M.L., Thornburgh, B.A., Tinholt, P.M., Cortes-Burgos, L.A., Walters, R.R., Hester, M.R., Seest, E.P., Dolak, L.A., Han, F., Olson, B.A., Fitzgerald, L., Staton, B.A., Raub, T.J., Hajos, M., Hoffmann, W.E., Li, K.S., Higdon, N.R., Wall, T.M., Hurst, R.S., Wong, E.H. and Rogers, B.N. (2006) Design, Synthesis, Structure-Activity Relationship, and in Vivo Activity of Azabicyclic aryl Amides as alpha7 Nicotinic Acetylcholine Receptor Agonists. Bioorganic & Medicinal Chemistry, 14, 8219-8248.
https://doi.org/10.1016/j.bmc.2006.09.019
[38]  Stoiljkovic, M., Leventhal, L., Chen, A., Chen, T., Driscoll, R., Flood, D., Hodgdon, H., Hurst, R., Nagy, D., Piser, T., Tang, C., Townsend, M., Tu, Z., Bertrand, D., Koenig, G. and Hajós, M. (2015) Concentration-Response Relationship of the α7 Nicotinic Acetylcholine Receptor Agonist FRM-17874 across Multiple in Vitro and in Vivo Assays. Biochemical Pharmacology, 97, 576-589.
https://doi.org/10.1016/j.bcp.2015.07.006
[39]  Baranowska, U. and Wisniewska, R.J. (2017) The α7-nACh Nic-otinic Receptor and Its Role in Memory and Selected Diseases of the Central Nervous System. Postepy Higieny I Medycyny Doswiadczalnej, 71, 633-648.
https://doi.org/10.5604/01.3001.0010.3844
[40]  Swerdlow, N.R., Light, G.A., Sprock, J., Calkins, M.E., Green, M.F., Greenwood, T.A., Gur, R.E., Gur, R.C., Lazzeroni, L.C., Nuechterlein, K.H., Radant, A.D., Ray, A., Seidman, L.J., Siever, L.J., Silverman, J.M., Stone, W.S., Sugar, C.A., Tsuang, D.W., Tsuang, M.T., Turetsky, B. and Braff, D.L. (2014) Deficient Prepulse Inhibition in Schizophrenia Detected by the Multi-Site COGS. Schizophrenia Research, 152, 503-512.
https://doi.org/10.1016/j.schres.2013.12.004
[41]  Cilia, J., Cluderay, J.E., Robbins, M.J., Reavill, C., Southam, E., Kew, J.N. and Jones, D.N. (2005) Reversal of Isolation-Rearing-Induced PPI Deficits by an alpha7 Nicotinic Receptor Agonist. Psychopharmacology, 182, 214-219.
https://doi.org/10.1007/s00213-005-0069-5
[42]  Pinnock, F., Bosch, D., Brown, T., Simons, N., Yeomans, J.R., DeOliveira, C. and Schmid, S. (2015) Nicotine Receptors Mediating Sensorimotor Gating and Its Enhancement by Systemic Nicotine. Frontiers in Behavioral Neuroscience, 9, 30.
https://doi.org/10.3389/fnbeh.2015.00030
[43]  Pevtsov, E.F., Storozheva, Z.I., Proshin, A.T. and Pevtsova, E.I. (2016) A Hardware-and-Software System for Experimental Studies of the Acoustic Startle Response in Laboratory Rodents. Bulletin of Experimental Biology and Medicine, 160, 410-413.
https://doi.org/10.1007/s10517-016-3183-y
[44]  Kobzar, A.I. (2006) Applied Mathematical Statistics. For Engineers and Scientists. Fizmatlit Press, Moscow. (In Russian)
[45]  Sommer, J.U., Schmitt, A., Heck, M., Schaeffer, E.L., Fendt, M., Zink, M., Nieselt, K., Symons, S., Petroianu, G., Lex, A., Herrera-Marschitz, M., Spanagel, R., Falkai, P. and Gebicke-Haerter, P.J. (2010) Differential Expression of Presynaptic Genes in a Rat Model of Postnatal Hypoxia: Relevance to Schizophrenia. European Archives of Psychiatry and Clinical Neurosciences, 260, S81-S89.
https://doi.org/10.1007/s00406-010-0159-1
[46]  Howell, K.R. and Pillai, A. (2016) Long-Term Effects of Prenatal Hypoxia on Schizophrenia-Like Phenotype in Heterozygous Reeler Mice. Molecular Neurobiology, 53, 3267-3276.
https://doi.org/10.1007/s12035-015-9265-4
[47]  Nizet, V. and Johnson, R.S. (2009) Interdependence of Hypoxic and Innate Immune Responses. Nature Reviews Immunology, 9, 609-617.
https://doi.org/10.1038/nri2607
[48]  Malyshev, I.Yu., Kruglov, S.V. and Lyamina, S.V. (2012) Hypoxia, Inflammation and Phenotypic Plasticity of Macrophages: The Central Role of HIF-1 and NFkappaB. Patologicheskaia Fiziologiia I Eksperimental’naia Terapiia, 56, 42-50. (In Russian)
[49]  Fan, J., Fan, X., Li, Y., Guo, J., Xia, D., Ding, L., Zheng, Q., Wang, W., Xue, F., Chen, R., Liu, S., Hu, L. and Gong, Y. (2016) Blunted Inflammation Mediated by NF-κB Activation in Hippocampus Alleviates Chronic Normobaric Hypoxia-Induced Anxiety-Like Behavior in Rats. Brain Research Bulletin, 122, 54-61.
https://doi.org/10.1016/j.brainresbull.2016.03.001
[50]  Braff, D.L. and Geyer, M.A. (1990) Sensorimotor Gating and Schizophrenia: Human and Animal Model Studies. Archives of General Psychiatry, 47, 181-188.
https://doi.org/10.1001/archpsyc.1990.01810140081011
[51]  HaB, K., Bak, N., Szycik, G.R., Glenthoj, B.Y. and Oranje, B. (2017) Deficient Prepulse Inhibition of the Startle Reflex in Schizophrenia using a Cross-Modal Paradigm. Biological Psychology, 28, 112-116.
https://doi.org/10.1016/j.biopsycho.2017.07.016
[52]  Alkondon, M., Pereiral, E.F.R., Cartes, W.S., Maelicke, A. and Albuquerque, E.X. (1997) Choline Is a Selective Agonist of a7 Nicotinic Acetylcholine Receptors in the Rat Brain Neurons. European Journal of Neuroscience, 9, 2734-2742.
https://doi.org/10.1111/j.1460-9568.1997.tb01702.x
[53]  Ji, D., Lape, R. and Dani, J.A. (2001) Timing and Location of Nicotinic Activity Enhances or Depresses Hippocampal Synaptic Plasticity. Neuron, 31, 131-141.
https://doi.org/10.1016/S0896-6273(01)00332-4
[54]  Sari, E., Bakar, B., Dincel, G.C. and Budak Yildiran, F.A. (2017) Effects of DMSO on a Rabbit Ear Hypertrophic Scar Model: A Controlled Randomized Experimental Study. Journal of Plastic, Reconstructive & Aesthetic Surgery, 70, 509-517.
https://doi.org/10.1016/j.bjps.2017.01.006
[55]  Soltani, N., Mohammadi, E., Allahtavakoli, M., Shamsizadeh, A., Roohbakhsh, A. and Haghparast, A. (2016) Effects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex. Basic and Clinical Neuroscience, 7, 213-220.
https://doi.org/10.15412/J.BCN.03070306
[56]  Sams Jr., W.M. and Carroll, N.V. (1966) Cholinesterase Inhibitory Property of Dimethyl Sulphoxide. Nature, 212, 405.
https://doi.org/10.1038/212405a0
[57]  North, P.E. and Mrak, R.E. (1989) Synaptosomal Uptake of Choline and of Gamma-Aminobutyric Acid: Effects of Ethanol and of Dimethylsulfoxide. Neurotoxicology, 10, 569-576.
[58]  Eaton, M.J., Pagán, O.R., Hann, R.M. and Eterovic, V.A. (1997) Differential Effects of Dimethyl Sulfoxide on Nicotinic Acetylcholine Receptors from Mouse Muscle and Torpedo Electrocytes. Neuroscience Letters, 230, 163-166.
https://doi.org/10.1016/S0304-3940(97)00505-3
[59]  Lavrov, I. and Cheng, J. (2008) Methodological Optimization of Applying Neuroactive Agents for the Study of Locomotor-Like Activity in the Mudpuppies (Necturus maculatus). Journal of Neuroscience Methods, 174, 97-102.
https://doi.org/10.1016/j.jneumeth.2008.07.010
[60]  Takada, Y., Yonezawa, A., Kume, T., Katsuki, H., Kaneko, S., Sugimoto, H. and Akaike, A. (2003) Nicotinic Acetylcholine Receptor-Mediated Neuroprotection by Donepezil against Glutamate Neurotoxicity in Rat Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 306, 772-777.
https://doi.org/10.1124/jpet.103.050104
[61]  Fujiki, M., Kubo, T., Kamida, T., Sugita, K., Hikawa, T., Abe, T., Ishii, K. and Kobayashi, H. (2008) Neuroprotective and Antiamnesic Effect of Donepezil, a Nicotinic Acetylcholine-Receptor Activator, on Rats with Concussive Mild Traumatic Brain Injury. Journal of Clinical Neuroscience, 15, 791-796.
https://doi.org/10.1016/j.jocn.2007.07.002
[62]  Takada-Takatori, Y., Kume, T., Izumi, Y., Ohgi, Y., Niidome, T., Fujii, T., Sugimoto, H. and Akaike, A. (2009) Roles of Nicotinic Receptors in Acetylcholinesterase Inhibitor-Induced Neuroprotection and Nicotinic Receptor Up-Regulation. Biological and Pharmaceutical Bulletin, 32, 318-324.
https://doi.org/10.1248/bpb.32.318
[63]  Stoiljkovic, M., Kelley, C., Nagy, D., Leventhal, L. and Hajós, M. (2016b) Selective Activation of α7 Nicotinic Acetylcholine Receptors Augments Hippocampal Oscillations. Neuropharmacology, 110, 102-108.
https://doi.org/10.1016/j.neuropharm.2016.07.010
[64]  Zakharova, E.I., Storozheva, Z.I., Dudchenko, A.M. and Kubatiev, A.A. (2010) Chronic Cerebral Ischemia Forms News Mechanisms of Learning and Memory. International Journal of Alzheimers Disease, 2010, Article ID: 954589.
http://dx.doi.org/10.4061/2010/954589

Full-Text

comments powered by Disqus