All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

Hygroscopicity of wood from Eucalyptus grandis and Pinus taeda subjected to thermal treatment

MECANIC PROPERTIES EVALUATION OF PLYWOOD PANELS OF Eucalyptus dunnii AND Eucalyptus dunnii/Pinus taeda

Production of laminated veneer lumber LVL using veneer of Schizolobium amazonicum, Eucalyptus saligna and Pinus taeda

Comparisons between two economically valuable forest species (Eucalyptus grandis and Pinus taeda) in relation to seed behaviour under controlled deterioration

Effect of Thinning and Harvest Type on Storage and Losses of Phosphorous in Pinus taeda L. Plantations in Subtropical Argentina

Contenido de agua en suelos cultivados con Eucalyptus grandis y Pinus taeda: Análisis de un caso en la provincia de Entre Ríos, Argentina Water content in soils cultivated with Eucalyptus grandis and Pinus taeda: A case study in Entre Ríos province, Argentina

Contenido de agua en suelos cultivados con Eucalyptus grandis y Pinus taeda: Análisis de un caso en la provincia de Entre Ríos, Argentina

Damage caused by different levels of artificial defoliation, simulating the leaf-cutting ants attack on young plantations of Pinus taeda and Eucalyptus grandis Danos causados por diferentes níveis de desfolha artificial para simula o do ataque de formigas cortadeiras em Pinus taeda e Eucalyptus grandis

Isotermas de sor??o de sementes de Eucaliptus grandis e Pinus taeda



Decomposition of Eucalyptus sp. and Pinus taeda Harvest Residues under Controlled Temperature and Moisture Conditions

DOI: 10.4236/ojf.2018.81007, PP. 87-104

Keywords: Forestry Residues, N Immobilization, C:N Ratio, Lignin, Polyphenols

Full-Text   Cite this paper   Add to My Lib


Background: Following the harvest of Eucalyptus grandis Hill ex Maiden, Eucalyptus globulus Labill, Eucalyptus dunnii Maiden and Pinus taeda L. forests, an important proportion of the aerial biomass is left to decompose on the site. The decomposition process is known to alter the dynamics of nutrients in the soil, particularly N, which is essential for the growth of the next turn of the plantation. The decomposition of E. grandis, E. globulus, E. dunnii and P. taeda harvest residues (leaves/needles, twigs and bark) was studied, following individual incubation of each residue type for 6 months under controlled temperature and humidity. Net N mineralization was also determined. Chemical characteristics of the residues were tested to identify those that affect the rate of decomposition and N release. Results: The highest decomposition rates were found for Eucalyptus leaves and P. taeda needles, but the proportion of C respired by P. taeda needles was lower than that of Eucalyptus leaves. No differences among species were found in the amount of CO2 produced during incubation of twigs. The lowest decomposition rates corresponded to Eucalyptus bark. Although C loss was related to many residue characteristics, the closest relationship was observed with their C:N ratio. Higher amounts of mineral N were produced by decomposition of E. grandis and E. dunnii leaves than P. taeda needles and E. globulus leaves. Bark decomposition produced N immobilization, irrespective of the species, and for twigs, this was also true, except for P. taeda. The net N mineralization by decomposition of Eucalyptus residues was highly correlated with their total N content and the C:N and lignin:N ratios. Conclusion: The total N content and the C:N ratio of residues can be used to satisfactorily assess the decomposition and net N mineralization potential of different residues types, avoiding the need to conduct more complex determinations.


[1]  Anderson, J. P. E. (1982). Soil Respiration. In A. L. Page (Ed.), Methods of Soil Analysis, Part 2, (2nd Edition, pp. 837-887). Madison, WI: Soil Science Society of America.
[2]  Barrera, M. D., Frangi, J. L., Ferrando, J. J., & Goya, J. F. (2004). Descomposición del mantillo y liberación foliar neta de nutrientes de Austrocedrus chilensis (D. Don) Pic. Serm. et Bizzarri en El Bolsón, Río Negro. Ecología Austral, 14, 99-112.
[3]  Berg, B., & McClaugherty, C. (2003). Plant Litter: Decomposition, Humus Formation Carbon Sequestration (p. 286). Germany: Springer.
[4]  Blumfield, T. J., & Xu, Z. H. (2003). Impact of Harvest Residues on Soil Mineral Nitrogen Dynamics Following Clearfall Harvesting of a Hoop Pine Plantation in Subtropical Australia. Forest Ecology and Management, 179, 55-67.
[5]  Canhoto, C., & Graça, M. (1999). Leaf Barriers of Colonization and Shredders (Tipula lateralis) Consumption of Decomposing Eucalyptus globulus. Microbial Ecology, 37, 163-172.
[6]  Constantinides, M., & Fownes, J. H. (1994). Nitrogen Mineralization from Leaves and Litter of Tropical Plants: Relationship to Nitrogen, Lignin and Soluble Polyphenol Concentrations. Soil Biology and Biochemistry, 26, 49-55.
[7]  Fierer, N., Schimel, J. P., Cates, R. G., & Zou, J. (2001). Influence of Balsam Poplar Tannin Fractions on Carbon and Nitrogen Dynamics in Alaskan Taiga Floodplain Soils. Soil Biology and Biochemistry, 33, 1827-1839.
[8]  Frankenberger, W. T., & Abdelmagid, H. M. (1985). Kinetic Parameters of Nitrogen Mineralization Rates of Leguminous Crop Incorporated into Soil. Plant and Soil, 87, 257-271.
[9]  Gama-Rodrigues, A. C., & Barros, N. F. (2002). Ciclagem de nutrientes em floresta natural e em plantios de eucalipto e de dandá no sudeste da Bahia, Brasil. Revista árvore, 26, 193-207.
[10]  Girisha, G. K., Condron, L. M., Clinton, P. W., & Davis, M. R. (2003). Decomposition and Nutrient Dynamics of Green and Freshly Fallen Radiata Pine (Pinus radiata) Needles. Forest Ecology and Management, 179, 169-181.
[11]  González, A., Hernández, J., & del Pino, A. (2016). Extracción y reciclaje de elementos nutritivos por cosecha de Eucalyptus globulus en Uruguay. Bosque (Valdivia), 37, 179-190.
[12]  Hernández, J., Del Pino, A., Salvo, L., & Arrarte, G. (2009). Nutrient Export and Harvest Residue Decomposition Patterns of a Eucalyptus dunnii Maiden Plantation in Temperate Climate of Uruguay. Forest Ecology and Management, 258, 92-99.
[13]  Kumaraswamy, S., Mendham, D. S., Grove, T. S., O’Connell, A. M., Sankaran, K. V., & Rance, S. J. (2014). Harvest Residue Effects on Soil Organic Matter, Nutrients and Microbial Biomass in Eucalypt Plantations in Kerala, India. Forest Ecology and Management, 328, 140-149.
[14]  Laclau, J. P., Levillain, J., Deleporte, P., de Dieu Nzila, J., Bouillet, J. P., Saint André, L., Versini, A., Mareschal, L., Nouvellon, Y., Thongo M’Bou, A., & Ranger, J. (2010). Organic Residue Mass at Planting Is an Excellent Predictor of Tree Growth in Eucalyptus Plantations Established on a Sandy Tropical Soil. Forest Ecology and Management, 260, 2148-2159.
[15]  Louzada, J. N. C., Schoereder, J. H., & De Marco Jr., P. (1997). Litter Decomposition in Semidecidous Forest and Eucalyptus spp. Crop in Brazil: A Comparison. Forest Ecology and Management, 94, 31-36.
[16]  Lovett, G. M., Weathers, K. C., Arthur, M. A., & Schultz, J. C. (2004). Nitrogen Cycling in a Northern Hardwood Forest: Do Species Matter? Biogeochemistry, 67, 289-308.
[17]  Mary, B., Recous, S., Darwis, D., & Robin, D. (1996). Interactions between Decomposition of Plant Residues and Nitrogen Cycling in Soil. Plant and Soil, 181, 71-82.
[18]  Mulvaney, R. L. (1996). Total Nitrogen, Nitrogen-Inorganic Forms. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 1123-1184). Madison, WI: Soil Science Society of America.
[19]  Mungai, N. W., & Motavalli, P. P. (2006). Litter Quality Effects on Soil Carbon and Nitrogen Dynamics in Temperate Alley Cropping Systems. Applied Soil Ecology, 31, 32-42.
[20]  Nelson, D. W., & Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 961-1010). Madison, WI: Soil Science Society of America.
[21]  O’Connell, A. M., Grove, T. S., Mendhan, D. S., Corbeels, M., McMurtrie, R. F., Shammas, K., & Rance, S. J. (2004). Impacts of Inter-Rotation Site Management on Nutrient Stores and Fluxes and Growth of Eucalypt Plantations in Southwestern Australia. In K. E. S. Nambiar, J. Ranger, A. Tiarks, & T. Toma (Eds.), Site Management and Productivity in Tropical Plantation Forests: Proceedings of Workshop in Congo July 2001 and China February 2003 (pp. 77-91). Bogor: Center for International Forestry Research.
[22]  Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic Inputs for Soil Fertility Management in Tropical Agroecosystems: Application of an Organic Resource Database. Agriculture, Ecosystems and Environment, 83, 27-42.
[23]  Rezende, J. L. P., Garcia, Q. S., & Scotti, M. R. (2001). Laboratory Decomposition of Dalbergia nigra All. ex Benth and Eucalyptus grandis W. Hill ex Maiden Leaves in Forest and Eucalypt Plantation Soils. Acta Botanica Brasilica, 15, 305-312.
[24]  Rhine, E. D., Sims, G. H., Mulvaney, R. L., & Pratt, E. J. (1998). Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water. Soil Science Society of America Journal, 62, 473-480.
[25]  Santos Costa, G., da Gama-Rodrigues, A. C., & de Melo Cunha, G. (2005). Decomposição e liberação de nutrientes da seraphilera foliar em povoamentos de Eucalyptus grandis no norte fluminense. Revista árvore, 29, 563-570.
[26]  Schwanninger, M., & Hinterstoisser, B. (2002). Klason Lignin: Modifications to Improve the Precision of the Standardized Determination. Holzforschung, 56, 161-166.
[27]  Shammas, K., O’Connell, A. M., Grove, T. S., McMurtrie, R., Damon, P., & Rance, S. J. (2003). Contribution of Decomposing Harvest Residues to Nutrient Cycling in a Second Rotation Eucalyptus globulus Plantation in South-Western Australia. Biology and Fertility of Soils, 38, 228-235.
[28]  Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Journal of Enology and Viticulture, 16, 144-148.
[29]  Soil Survey Staff (2006). Keys to Soil Taxonomy (10th ed.). Washington DC: United States Department of Agriculture, Natural Resources Conservation Service.
[30]  Trinsoutrot, I., Recous, S., Bentz, B., Lineres, M., Cheneby, D., & Nicolardot, B. (2000). Biochemical Quality of Crop Residues and Carbon and Nitrogen Mineralization Kinetics under Nonlimiting Nitrogen Conditions. Soil Science Society of America Journal, 64, 918-926.
[31]  Verkaik, E., Jongkind, A. G., & Berendse, F. (2006). Short-Term and Long-Term Effects of Tannins on Nitrogen Mineralisation and Litter Decomposition in Kauri (Agathis australis (D. Don) Lindl.) Forests. Plant and Soil, 287, 337-345.
[32]  Wagner, G. H., & Wolf, D. C. (1999). Carbon Transformations and Soil Organic Matter Formation. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, & D. A. Zuberer (Eds.), Principles and Applications of Soil Microbiology (pp. 218-258). Upper Saddle River, NJ: Prentice Hall.
[33]  Woo, K. S., Fins, L., McDonald, G. I., Wenny, D. L., & Eramian, A. (2002). Effects of Nursery Environment on Needle Morphology of Pinus monticola Dougl. and Implications for Tree Improvement Programs. New Forests, 24, 113-129.
[34]  Zak, D. R., Grigal, D. F., & Ohmann, L. F. (1993). Kinetics of Microbial Respiration and Nitrogen Mineralization in Great Lakes Forests. Soil Science Society of America Journal, 57, 1100-1106.


comments powered by Disqus