All Title Author
Keywords Abstract


Experiments and Functional Realism

DOI: 10.4236/ojm.2017.74005, PP. 67-84

Keywords: Quark Gluon Plasma, Experimental Realism, Standard Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article focuses on interpreting theories when they are functioning in an ongoing investigation. The sustained search for a quark-gluon plasma serves as a prime example. The analysis treats the Standard Model of Particle Physics as an Effective Field Theory. Related effective theories functioning in different energy ranges can have different functional ontologies, or models of the reality treated. A functional ontology supplies a categorial framework that grounds and limits the language used in describing experiments and reporting results. The scope and limitations of such a local functional realism are evaluated.

References

[1]  Hughes, R.I.G. (1989) The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge.
[2]  Van Fraassen, B. (1991) Quantum Mechanics: An Empiricist View. Clarendon Press, Oxford. https://doi.org/10.1093/0198239807.001.0001
[3]  Gelis, F. (2011) The Early Stages of a High-Energy Heavy Ion Collision. arXiv:1110.1544v1 [hep-ph].
[4]  Lincoln, D. (2009) The Quantum Frontier: The Large Hadron Collider. The Johns Hopkins University Press, Baltimore.
[5]  Aamodt, K., et al. (2011) Charged-Particle Multiplicity Density at Mid-Rapidity in Central Pb-Pb Collisions at Sqrt(SNN = 2.76 Tev). Physical Review Letters, 105, 252301.
https://doi.org/10.1103/PhysRevLett.105.252301
[6]  Aggarwal, M.M., et al. (2010) An Experimental Exploration of the QCD Phase Phase Diagram: The Search for the Critical Point and the Onset of Deconfinement. arXiv:1007.2613v1.
[7]  Adams, J., et al. 2005. Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions. arXiv:nucl-ex/0501009v3.
[8]  Kolb, P.F. and Heinz, U. (2003) Hydrodynamic Description of Ultrarelativistic Heavy-Ion Collisions. arXiv:nucl-th/0305084.
[9]  Zajac, W.A. (2008) The Fluid Nature of the Quark-Gluon Plasma. arXiv:0802.3552v1 [nucl-ex].
[10]  Iancu, E. and Wu, B. (2015) Thermalization of Mini-Jets in a Quark-Gluon Plasma. Journal of High Energy Physics, 155. arXiv:1512.09353v1 hep-ph, 1-4.
https://doi.org/10.1007/JHEP10(2015)155
[11]  Cacciari, M. and Salam, G.P. (2008) The Anti-kt Jet Clustering Algorithm. arXiv:0802.1189v2 [hep-ph].
[12]  Bohr, N. (1963) Essays 1958-1962 on Atomic Physics and Human Knowledge. Wiley, New York.
[13]  Honner, John. 1987a. The Description of Nature: Niels Bohr and the Philosophy of Quantum. Oxford: Clarendon Press.
[14]  MacKinnon, E. (2011) Interpreting Physics: Language and the Classical/Quantum Divide. Springer, Amsterdam.
[15]  Heisenberg, W. (1958) Physics and Philosophy: The Revolution in Modern Science. Harper’s, New York.
[16]  Pauli, W. (1964) Collected Scientific Papers. Interscience, New York.
[17]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. Physical Review, 85, 166-193.
[18]  Davisson, C.J. (1928) Are Electrons Waves? Vol. 2, Basic Books Inc., New York, 1144-1165.
[19]  Samios, N. (1997) Early Baryon and Meson Spectroscopy Culminating in the Discovery of the Omega-Minus and Charmed Baryons. In: Hoddeson, L., et al., Eds., The Rise of the Standard Model, Cambridge University Press, Cambridge, 525-541.
https://doi.org/10.1017/CBO9780511471094.031
[20]  Johnson, G. (1999) Strange Beauty: Murray Gell-Mann and the Revolution in Twentieth-Century Physics. Alfred A. Knopf, New York.
[21]  Kaku, M. (1993) Quantum Field Theory: A Modern Introduction. Oxford University Press, New York.
[22]  Hoddeson, L., et al. (1997) The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511471094
[23]  MacKinnon, E. (2008) The Standard Model as a Philosophical Challenge. Philosophy of Science, 75, 447-457. https://doi.org/10.1086/595864
[24]  Georgi, H. (1993) Effective Field Theory. Annual Review of Nuclear and Particle Science, 43, 209-252. https://doi.org/10.1146/annurev.ns.43.120193.001233
[25]  Manohar, A. (1996) Effective Field Theories.
[26]  Kaplan, D. (2005) Five Lectures on Effective Field Theory.
[27]  Hartmann, S. (2001) Effective Field Theories, Reductionism and Scientific Explanation. Studies in History and Philosophy of Modern Physics, 32B, 267-304.
https://doi.org/10.1016/S1355-2198(01)00005-3
[28]  Castellani, E. (2002) Reductionism, Emergence, and Effective Field Theories. Studies in History and Philosophy of Modern Physics B, 33, 251-267.
https://doi.org/10.1016/S1355-2198(02)00003-5
[29]  Kane, G. (2000) Super Symmetry. Mass. Perseus Publisher, Cambridge.
[30]  Rohrlich, F. (2001) Cognitive Scientific Realism. Philosophy of Science, 68, 185-202.
https://doi.org/10.1086/392872
[31]  Chang, R. (1988) Chemistry. McGraw-Hill, New York.
[32]  Scerri, E. (2000) The Failure of Reduction and How to Resist Disunity of the Sciences. Science and Education, 9, 405-425. https://doi.org/10.1023/A:1008719726538

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal