All Title Author
Keywords Abstract


A Pilot Study of Antibody Drug Therapy to Regulate Cell Adhesion in Dental Implants

DOI: 10.4236/ojst.2017.711046, PP. 494-500

Keywords: Laminin-332, Monoclonal Antibody, Cleavage, Cell Adhesion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dental implant therapy is a highly effective treatment for recovering occlusion after tooth loss. An important factor in the success of dental implants is establishing strong osseointegration. If more epithelial cells migrate to the implant-bone interface than mesenchymal stem cells, effective osseointegration may fail. Therefore, controlling epithelial cell adhesion and motility would be an effective strategy to increase the success rate of osseointegration. Laminin-332 is a major component of the basement membrane and is composed of three chains (α3, β3 and γ2). It is well-known that laminin-332 regulates cellular functions such as adhesion, proliferation, apoptosis and differentiation. These biological functions depend on changes in the structural arrangement of laminin-332 by proteolytic cleavage. It is well-known that cleavage of the α3 chain between its LG domains gives laminin-332 its biological function. In this study, we focused on LG domain cleavage and developed antibodies that target the LG domain cleavage site. We attempted to change the biological function of laminin-332 to control cell adhesion for the purpose of regulating dental implant therapy.

References

[1]  Misch, C.E. (2007) Contemporary Implant Dentistry. Elsevier, St. Louis.
[2]  Pjetursson, B.E., Thoma, D., Jung, R., Zwahlen, M. and Zembic, A. (2012) A Systematic Review of the Survival and Complication Rates of Implant-Supported Fixed Dental Prostheses (FDPs) after a Mean Observation Period of at Least 5 Years. Clinical Oral Implants Research, 23, 22-38.
https://doi.org/10.1111/j.1600-0501.2012.02546.x
[3]  Sinn, D.P., Bedrossian, E., Vest, A.K. and Bedrossian, V. (2011) Craniofacial Implant Surgery. Oral & Maxillofacial Surgery Clinics of North America, 23, 321-335. https://doi.org/10.1016/j.coms.2011.01.005
[4]  Asbjorn, J. (2009) Osseointegration and Dental Implants. John Wiley & Sons, New York.
[5]  Castagna, L., Polido, W.D., Soares, L.G. and Tinoco, E.M. (2013) Tomographic Evaluation of Iliac Crest Bone Grafting and the Use of Immediate Temporary Implants to the Atrophic Maxilla. International Journal of Oral and Maxillofacial Surgery, 42, 1067-1072.
https://doi.org/10.1016/j.ijom.2013.04.020
[6]  Branemark, M. and Worthington, P. (1992) Advanced Osseointegration Surgery: Applications in the Maxillofacial Region. Quintessence Books, Carol Stream.
[7]  Domogatskaya, A., Rodin, S. and Tryggvason, K. (2012) Functional Diversity of Laminins. Annual Review of Cell and Developmental Biology, 28, 523-553.
https://doi.org/10.1146/annurev-cellbio-101011-155750
[8]  Miner, J.H. and Yurchenco, P.D. (2004) Laminin Functions in Tissue Morphogenesis. Annual Review of Cell and Developmental Biology, 20, 255-284.
https://doi.org/10.1146/annurev.cellbio.20.010403.094555
[9]  Goldfinger, L.E., Stack, M.S. and Jones, J.C. (1998) Processing of Laminin-5 and Its Functional Consequence: Role of Plasmin and Tissue-Type Plasminogen Activator. Journal of Cell Biology, 141, 255-265.
https://doi.org/10.1083/jcb.141.1.255
[10]  Tsubota, Y., Yasuda, C., Kariya, Y., Ogawa, T., Hirosaki, T., Mizushima, H., et al. (2005) Regulation of Biological Activity and Matrix Assembly of Laminin-5 by COOH-Terminal, LG4-5 Domain of α3 Chain. Journal of Biological Chemistry, 280, 14370-14377.
https://doi.org/10.1074/jbc.M413051200
[11]  Colognato, H. and Yurchenco, P.D. (2000) Form and Function: The Laminin Family of Heterotrimers. Developmental Dynamics, 218, 213-234.
https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R
[12]  Miyazaki, K. (2006) Laminin-5 (laminin-332): Unique Biological Activity and Role in Tumor Growth and Invasion. Cancer Science, 97, 91-98.
https://doi.org/10.1111/j.1349-7006.2006.00150.x
[13]  Tsubota, Y., Mizushima, H., Hirosaki, T., Higashi, S., Yasumitsu, H. and Miyazaki, K. (2006) Isolation and Activity of Proteolytic Fragment of Laminin-5 α3 Chain. Biochemical and Biophysical Research Communications, 278, 614-620.
https://doi.org/10.1006/bbrc.2000.3851
[14]  Rousselle, P. and Beck, K. (2013) Laminin-332 Processing Impacts Cellular Behaveor. Cell Adhesion & Migration, 7, 122-134.
https://doi.org/10.4161/cam.23132
[15]  Sawada, T., Yamazaki, T., Shibayama, K., Yamaguchi, Y. and Ohshima, M. (2015) Ultrastructural Immunization of Laminin 332 (laminin 5) at Dentogingical Interface in Macacafuscata Monkey. Medical Molecular Morphology, 48, 104-111.
https://doi.org/10.1007/s00795-014-0085-9
[16]  Pallala, T., Vitranen, I., Oksanen, J., Jones, J.C. and Hormia, M. (2002) Function of Laminin and Laminin-Binding Integrins in Gingival Epithelial Cell Adhesion. Journal of Periodontology, 73, 709-719.
https://doi.org/10.1902/jop.2002.73.7.709
[17]  Miyata, K. and Yakebe, J. (2013) Anodized-Hydrothermally Treated Titanium with a Nanotopographic Surface Structure Regulates Integrin α6β4 and Laminin-5 Gene Expression in Adherent Murine Gingival Epithelial Cells. Archives of Oral Biology, 58, 1696-1708.
[18]  Kondo, R., Atsuta, I., Ayukawa, Y., Yamaza, T., Matsuura, Y., Furuhashi, A., et al. (2014) Therapeutic Interaction of Systemically-Administered Mesenchymal Stem Cells with Peri-Implant Mucosa. PLoS ONE, 9, e90681.
https://doi.org/10.1371/journal.pone.0090681
[19]  Esposito, M., Thomsen, P., Ericson, L.E. and Lekholm, U. (1999) Histopathologic Observations on Early Oral Implant Failures. The International Journal of Oral & Maxillofacial Implants, 14, 798-810.
[20]  Katagiri, F., Hara, T., Yamada, Y., Urushibara, S., Hozumi, K., Kikkawa, Y. and Nomizu, M. (2014) Biological Activities of the Homologous Loop Regions in the Laminin α Chain LG Modules. Biochemistry, 53, 3699-3708.
https://doi.org/10.1021/bi5003822
[21]  Klees, R.F., Salasznyk, R.M., Kingsley, K., Willians, W.A., Boskey, A. and Plopper, G.E. (2005) Laminin-5 Induces Osteogenic Gene Expression in Human Mesencymal Stem Cells through an ERK-Dependent Pathway. Molecular Biology of the Cell, 16, 881-890.
https://doi.org/10.1091/mbc.E04-08-0695
[22]  Hashimoto, J., Ogawa, Y., Tsubota, K. and Miyazaki, K. (2005) Laminin-5 Suppresses Chondrogenic Differentiation of Murine Teratocarcinoma Cell Line ATDC5. Experimental Cell Research, 310, 256-269.
[23]  Salasznyk, R.M., Klees, R.F., Boskey, A. and Plopper, G.E. (2007) Activation of FAK Is Necessary for the Osteogenic Differentiation of Human Mesenchymal Stem Cells on Laminin-5. Journal of Cellular Biochemistry, 100, 499-514.
https://doi.org/10.1002/jcb.21074
[24]  Klee, R.F., Salasznyk, R.M., Ward, D.F., Crone, D.E., Williams, W.A., Harris, M.P., Boskey, A., Quaranta, V. and Plopper, G.E. (2008) Dissection of the Osteogenic Effects of Laminin-332 Utilizing Specific LG Domains: LG3 Induces Osteogenic Differentiation, But Not Mineralization. Experimental Cell Research, 314, 763-773.

Full-Text

comments powered by Disqus