All Title Author
Keywords Abstract

RF Field-Driven Electron Tunneling through Mesoscale Junctions

DOI: 10.4236/jmp.2017.812117, PP. 1950-1960

Keywords: Quantum Mechanical Tunneling, Mesoscopic Physics, Tunnel Junctions, Quantum Point Contacts

Full-Text   Cite this paper   Add to My Lib


Preliminary results of a study are reported here investigating mesoscopic tunnel junctions irradiated with coherent low-intensity (-50 to -10 dB) pulsed microwave RF fields at moderately low (LN2) temperatures. Quantum tunneling of electrons was observed through fabricated mesoscale gap junctions as a result of coherent irradiating fields at low temperatures around 77 - 100 K. The tunneling current was seen as a result of applied microwave fields across the junctions, distinguishable from shot noise and resistance effects. The form of tunneling behavior does not lead to any conductance quantization effects which could manifest the junction as a Quantum Point Contact (QPC), hence it is surmised that the phenomenon is purely low intensity RF field-induced tunneling of electrons across the mesoscale junctions at low temperatures.


[1]  Imry, Y. (2002) Introduction to Mesoscopic Physics. 2nd Edition, Oxford University Press, New York.
[2]  Jezouin, S., et al. (2013) Science, 342, 601-604.
[3]  Dubois, J. et al. (2013) Nature, 502, 659.
[4]  Palomaki, T.A., et al. (2013) Science, 342, 710-713.
[5]  Kouwenhoven, L.P., Schön, G. and Sohn, L.L. (1997) Introduction to Mesosopic Electron Transport. In: Lydia, L., Sohn, L.P. and Kouwenhoven, G.S., Eds., Mesoscopic Electron Transport, Springer-Science, 1-44.
[6]  Waltner, D. (2012) A Semiclassical Approach to Mesoscopic Systems. Springer, Berlin, Heidelberg.
[7]  van Houten, H., Beenaker, C.W.J. and van Wees, B.J (1992) Chapter II: Quantum Point Contacts. In: Semiconductors Semimetals, Volume 35, 9-112.
[8]  Takagi, S. (2002) Macroscopic Quantum Tunneling. Cambridge Press, Cambridge.
[9]  Ueda, M. and Leggett, A.J. (1998) Physical Review Letters, 80, 1576.
[10]  Liang, S-D. (2014) Quantum Tunneling and Field Electron Emission Theories. World Scientific Publishing Company, Singapore, 17-22, 23-60.
[11]  Massel, F., et al. (2011) Nature, 480, 351.
[12]  Reilly, D.J., et al. (2007) Applied Physics Letters, 91, Article ID: 162101.
[13]  Cassidy, M.C., et al. (2007) Applied Physics Letters, 91, Article ID: 222104.
[14]  Colless, J.I., et al. (2014) Nature Communications, 5, 3716.
[15]  Joas, T., et al. (2017) Quantum Sensing of Weak Radio-Frequency Signals by Pulsed Mollow Absorption Spectroscopy. Nature Communications, 8, 964.
[16]  Grabert, H. (1987) Influence of Phonons and Electrons on Low-Temperature Translational Tunneling. In: Heidemann, A., Magerl, A., Prager, M., Richter, D. and Springer, T., Eds., Quantum Aspects of Molecular Motions in Solids, Springer-Verlag, Berlin, 128-132.
[17]  Ueda, M. and Hatakenaka, N. (1991) Physical Review B, 43, 4975.
[18]  Ingold, G.-L. and Nazarov, Y.V. (1992) Charge Tunneling Rates in Ultra-Small Junctions. In: Grabert, H. and Devoret, M.H., Eds., Single Charge Tunneling, NATO ASI Series B, Vol. 294, 21-107, Plenum, New York.
[19]  Bohr, D., Schmitteckert, P. and Wölfle, P. (2006) Europhysics Letters, 73, 246.
[20]  Nazarov, Y.V. (1991) Physical Review B, 43, 6220; Nazarov, Y.V. (1989) Fiz. Tverd. Tela, 31, 188 [Sov. Phys. Solid State 31, 1581 (1989)]; Nazarov, Y.V. (1989) Zh. Eksp. Teor. Fiz., 95, 975 [Sov. Phys. JETP 68, 561 (1990)].
[21]  Ingold, G.L. (1992) Effect of the Electromagnetic Environment on Single-Charge Tunneling. In: Koch, H. and Lubbig, H., Eds., Single-Electron Tunneling and Mesoscopic Devices, Springer Series in Electronics and Photonics, Vol. 31, Springer-Verlag, Berlin, 13-21.
[22]  Schön, G. (1997) Single-Electron Tunneling. In: Dittrich, T., Hanggi, P., Ingold, G., Kramer, B., Schon, G. and Zwerger, W., Eds., Quantum Transport and Dissipation, VCH Verlag, Revised Version, Chapter 3, 3-22.
[23]  Grabert, H. (2015) Physical Review B, 92, Article ID: 245433.
[24]  Kim, N., et al. (2002) Journal of Vacuum Science & Technology B, 20, 386-388.
[25]  Delsing, P. (1990) Single Electron Tunneling in Ultrasmall Tunnel Junctions. PhD Dissertation, University of Goteborg, Sweden.
[26]  Delsing, P., et al. (1989) Physical Review Letters, 63, 1861.
[27]  Karvonen, J.T., Taskinen, L.J. and Maasilta, I.J. (2004) Physica Status Solidi, 1, 2799.
[28]  Bukhari, M.H.S., Miller, J.H. and Shah, Z.H. (2009) Pakistan Journal of Scientific and Industrial Research, 52, 91.
[29]  Jonson, M. (1989) Physical Review B, 39, 5924.
[30]  Olkhovsky, V.S., Recami, E. and Zaichenko, A.K. (2005) Europhysics Letters, 70, 712-718.
[31]  Delsing, P. (1990) Physical Review B, 42, 7439.
[32]  Morillo, M. and Cukier, R.I. (1996) Physical Review B, 54, 13962.
[33]  Dynes, R.C. (1979) Tunneling in Physical Systems. In: Chance, B., Devault, D.C., Frauenfelder, H., Marcus, R.A., Schrieffer, J.R. and Sutin, N., Eds., Tunneling in Biological Systems, Academic Press, New York, 17-24.
[34]  Grabert, H. and Devoret, M.H. (1991) Proc. 1991 Les Houches NATO Advanced Institute on Single-Charge Tunneling. Plenum.
[35]  De Jong, M.J.M. and Beenakker, C.W.J. (1997) Shot Noise in Mesoscopic Systems. In: Sohn, L.L., Kouwenhoven, L.P. and Schön, G., Eds., Mesoscopic Electron Transport, Springer-Science, 225-258.
[36]  Liang, S.-D. (2014) Quantum Tunneling and Field Electron Emission Theories. World Scientific, Singapore, 17-23.
[37]  Munsterman, G.T. (1965) Tunnel-Diode Microwave Amplifiers. In: APL Technical Digest, Vol. 4, No. 5, 2-9.
[38]  Van Ruitenbeek, J.M. (1997) Quantum Point Contacts between Metals. In: Sohn, L.L., Kouwenhoven, L.P. and Schön, G., Eds., Mesoscopic Electron Transport, Springer-Science, 549-580.
[39]  BESAC Subcommittee on Mesoscale Science (2012) From Quanta to the Continuum: Opportunities for Mesoscale Science. A Report to the Basic Energy Sciences Advisory Committee. Prepared by the BESAC Subcommittee on Mesoscale Science, the U.S. Department of Energy, Washington DC.


comments powered by Disqus