All Title Author
Keywords Abstract


Modeling and Simulation of an Isothermal Suspension Polymerization Reactor for PMMA Production Using Python

DOI: 10.4236/aces.2017.74029, PP. 408-419

Keywords: Suspension Polymerization, Modeling, Simulation, Python

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the modeling and simulation of a suspension polymerization for methyl methacrylate in an isothermal reactor to produce poly methyl methacrylate using Python 3.5. The numeral solution to the stiff ordinary differential equations was performed by building a custom module which was used with the inbuilt NumPy and matplotlib modules that come with the Anaconda python distro. Python was used in order to obtain a realistic solution that considers the gel, glass and cage effects that affect the non-linear polymerization kinetics established in literature. The results showed that a maximum monomer conversion of about 92.8% at a minimum batch time of about 2.2 hours could be achieved at the specified conditions to obtain a polydisperse polymer with an index of 27. It is further concluded that Python can be employed to perform similar studies with equal success as any other programming language.

References

[1]  Arora, P., Jain, R., Mathur, K., Sharma, A. and Gupta, A. (2010) Synthesis of Polymethyl Methacrylate (PMMA) by Batch Emulsion Polymerization. African Journal of Pure and Applied Chemistry, 4, 152-157.
[2]  Billmeyer, F. W. (1971) Textbook of Polymer Science. John Wiley & Sons, New York.
[3]  Odian, G. (1970) Principles of Polymerization. McGraw-Hill, New York.
[4]  Allen, G. and Bevington, J.C. (1989) Comprehensive Polymer Science. Pergamon Press, New York.
[5]  Caytano, T.R.A. and Machado, R.A.F. (2011) Soft-Sensor Based on Artificial Neuronal Network for the Prediction of Physico-chemical Variables in Suspension Polymerization Reactions. Chemical Engineering Transactions, 529-534.
[6]  Verros, G.D., Achilias, D.S. and Giannoukos, G.I. (2011) Development of a Comprehensive Mathematical Model for Free Radical Suspension Polymerization of Methyl Methacrylate. Polymer Engineering and Science, 51, 670-678. https://doi.org/10.1002/pen.21865
[7]  Klaus, A., Manfred, S. and Thomas, R. (2016) Polymethacrylates. in Ullmann’s Polymers and Plastics: Products and Processes, Wiley-VCH, 885-897.
[8]  Silvia, C. and Victor, B. (1999) Free Radical Polymerization of Methyl Methacrylate Modeling and Simulation under Semibatch and Nonisothermal Reactor Conditions. Journal of Applied Polymer Science, 74, 2561-2570.
[9]  Chiu, W.Y., Carratt, G.M. and Soong, S.D. (1983) A Computer Model for the Gel Effect in Free-Radical Polymerization. Macromolecules, 16, 348-357.
[10]  Achilias, D.S. and Kiparissides, C. (1992) Development of a General Mathematical Framework for Modelling Diffusion-Controlled Free-Radical Polymerization Reaction. Macromolecules, 25, 3739-3750. https://doi.org/10.1021/ma00040a021
[11]  Garg, D.K., Serra, C.A., Hoarau, Y., Parida, D., Bouquey, M. and Muller, R. (2014) Analytical Solution of Free Radical Polymerization: Applications Implementing Gel Effect Using AK Model. Macromolecules, 47, 7370-7377. https://doi.org/10.1021/ma501413m
[12]  Seth, V. and Gupta, S.K. (1995) Free Radical Polymerizations Associated with the Trommsdorff Effect under Semibatch Reactor Conditions: An Improved Model. Journal of Polymer Engineering, 15, 283-323. https://doi.org/10.1515/POLYENG.1995.15.3-4.283
[13]  Ghosh, P., Gupta, S.K. and Saraf, D.N. (1998) An Experimental Study on Bulk and Solution Polymerization of Methyl Methacrylate with Responses to Step Changes in Temperature. Chemical Engineering Journal, 70, 25-35. https://doi.org/10.1016/S1385-8947(98)00064-3
[14]  Rosa, J.N.D. (2011) Modeling and Simulation of a Lab-Scale Polymerization Reactor. Disserta??o de mestrado, ROSA, Jaquelino Nascimento da.
[15]  Ekpo, E.E. (2006) Dynamic Optimisation and Control of Batch Polymerization Process. Ph.D. Thesis, University of Bradford, Bradford.
[16]  Fangbin, Z., Gupta, S.K. and Ray, A.K. (2001) Modeling of the Sheet-Molding Process for Poly (Methyl Methacrylate). Journal of Applied Polymer Science, 81, 1951-1971.
[17]  Moran, S. (2015) An Applied Guide to Process Plant Design. Butterworth-Heinemann, Oxford.
[18]  Achilias, D.S. and Kiparissides, C. (1994) On the Validity of the Steady State Approximations in High Conversion Diffusion Controlled Free-Radical Copolymerization Reactions. Polymer, 35, 1714-1721. https://doi.org/10.1016/0032-3861(94)90846-X
[19]  Penlidis, A., Ponnuswamy, S.R., Kiparissides, C. and O'Driscoll, K.F. (1992) Polymer Reaction Engineering: Modeling Consideration for Control Studies. The Chemical Engineering Journal, 50, 95-107. https://doi.org/10.1016/0300-9467(92)80013-Z
[20]  Dotson, N.A., Galvan, R., Laurence, R.L. and Tirrell, M. (1996) Polymerization Process Modeling. VCH Publishers, New York.
[21]  Ray, W.H. (1972) On the Mathematical Modeling of Polymerization Reactors. Journal of Macromolecular Science, Part C, 8, 1-56.
[22]  Kiusalaas, J. (2010) Numerical Methods in Engineering Using Python. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511812224

Full-Text

comments powered by Disqus