This letter to the editor presents some notes related to the technological and economic limitations of the means actually available for energy storage and highlights the role that can be played by the notion of energetic complementarity in order to make feasible alternatives for a better use of the energy resources at our disposal. The notion of complementarity may represent a major advance in the design of energy generation projects, but its application depends on a broader conception of the projects and the contexts in which they are included.
References
[1]
Beluco, A., Souza, P.K. and Krenzinger, A. (2008) A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renewable Energy, 33, 2157-2165. https://doi.org/10.1016/j.renene.2008.01.019
[2]
Hoicka, C.E. and Rowlands, I.H. (2011) Solar and Wind Resource Complementarity: Advancing Options for Renewable Electricity Integration in Ontario, Canada. Renewable Energy, 36, 97-107. https://doi.org/10.1016/j.renene.2010.06.004
[3]
Beluco, A., Souza, P.K., Livi, F.P. and Caux, J. (2015) Energetic Complementarity with Hydropower and the Possibility of Storage in Batteries and Water Reservoirs. In: Sorensen, B., Ed., Solar Energy Storage, Academic Press, London, 155-158.
https://doi.org/10.1016/B978-0-12-409540-3.00007-4
[4]
Denault, M., Dupuis, D. and Couture-Cardinal, S. (2009) Complementarity of Wind and Hydro Power: Improving the Risk Profile of Energy Inflows. Energy Policy, 37, 5376-5384. https://doi.org/10.1016/j.enpol.2009.07.064
[5]
Kougias, I., Szabó, S., Monforti-Ferrario, F., Huld, T. and Bódis, K. (2016) A Methodology for Optimization of the Complementarity between Small Hydropower Plants and Solar PV Systems. Renewable Energy, 87, 1023-1030.
https://doi.org/10.1016/j.renene.2015.09.073