All Title Author
Keywords Abstract


Mitochondrial Haplotype Analysis of Pomoxis nigromaculatus Inhabiting Three Georgian Lakes

DOI: 10.4236/ojgen.2017.73009, PP. 105-116

Keywords: Pomoxis nigromaculatus, Black Crappie, Cytochrome Oxidase, COI, Haplotype, Mitochondria

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pomoxis nigromaculatus, more commonly referred to as black crappie is indigenous to fresh water streams and lakes in the eastern United States and supports an important recreational fishery. We examined the genetic population structure of black crappie inhabiting three Georgian Lakes, Lake Sidney Lanier, Lake Seminole and Hartwell Lake. DNA sequencing of 229 fish samples, utilizing the DNA barcode marker cytochrome oxidase subunit I (COI) revealed 27 polymorphic sites which defined nine haplotypes. Only haplotype 2 was shared between all sample sites with six other haplotypes being unique for individual lakes, for an overall haplotype diversity of 0.734. Tajima’s D and Fu’s tests were implemented to assess departures from neutral expectations. Fst pairwise comparisons were statistically significant among all populations of black crappie evaluated in this study.

References

[1]  Nature Serve (2013) Pomoxis Nigromaculatus. The IUCN Red List of Threatened Species.
www.iucnredlist.org
[2]  Edwards, E. (1982) Habitat Suitability Index Models: Black Crappie. USDI Fish Wildlife Service, FWS/OBS-82/10.6 25.
[3]  Bridges, A. Florida Museum of Natural History. Web Electronic Publication.
www.flmnh.ufl.edu/fish/gallery/Descript/BlackCrappie/BlackCrappie.html
[4]  Georgia Department of Natural Resources Wildlife Resources Division.
http://georgiawildlife.com/fishing/identification
[5]  U.S. Fish and Wildlife Service and U.S. Census Bureau (2011) National Survey of Fishing, Hunting, and Wildlife Associated Recreation Survey, U.S. Fish and Wildlife Service and U.S. Census Bureau.
[6]  Froese, R. and Pauly, D. (2017) Fish Base. World Wide Web Electronic Publication. www.fishbase.org
[7]  Dunham, R.A., DiBona, J., Rachmatika, I., Norgren, K.G. and Emory, A. (1995) Biochemical Genetics of Crappie in Georgia, 1-15.
[8]  Travnichek, V.H., Maceina, M.J., Wooten, M.C. and Dunham, R.A. (1997) Symmetrical Hybridization between Black Crappie and White Crappie in an Alabama Reservoir Based on Analysis of the Cytochrome-B Gene. Transactions of the American Fisheries Society, 126, 127-132.
https://doi.org/10.1577/1548-8659(1997)126<0127:SHBBCA>2.3.CO;2
[9]  Miller, A., Yang, B., Foster, T. and Kirchmaier, A.L. (2008) Proliferating Cell Nuclear Antigen and ASF1 Modulate Silent Chromatin in Saccharomyces cerevisiae via Lysine 56 on Histone H3. Genetics, 179, 793-809.
https://doi.org/10.1534/genetics.107.084525
[10]  Begg, G.A., Friedland, K.D. and Pearce, J.B. (1999) Stock Identification and Its Role in Stock Assessment and Fisheries Management: An Overview. Fisheries Research, 43, 1-8.
https://doi.org/10.1016/S0165-7836(99)00062-4
[11]  Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. (2003) Biological Identifications through DNA Barcodes. The Royal Society, 270, 313-321.
https://doi.org/10.1098/rspb.2002.2218
[12]  Chapman, R.W. (1989) Mitochondrial and Nuclear Gene Dynamics of Introduced Populations of Lepomis Macrochirus. Genetics, 123, 399-404.
[13]  Sevilla, R.G., Diez, A., Noren. M., Mouchel, O., Jerome, M., Verrez-Bagnis, V., Van Pelt, H., Favre-Krey, L., Krey, G. and Bautista, J. (2007) Primers and Polymerase Chain Reaction Conditions for DNA Barcoding Teleost Fish Based on the Mitochondrial Cytochrome B and Nuclear Rhodopsin Genes. Molecular Ecology Notes, 7, 730-734.
https://doi.org/10.1111/j.1471-8286.2007.01863.x
[14]  Jimenez, J., Sarma, S.S., Calderon-Torres, M. and Nandini, S. (2013) Morphological, Morphometrical, and Molecular Analysis of the Rotifer Asplanchna Brightwellii from Selected Freshwater Bodies in Central Mexico. Journal of Environmental Biology, 34, 1039-1046.
[15]  Hanner, R., Floyd, R., Bernard, A., Collette, B.B. and Shivji, M. (2011) DNA Barcoding of Billfishes. Mitochondrial DNA, 22, 27-36.
https://doi.org/10.3109/19401736.2011.596833
[16]  Arabi, J., Judson, M.L., Deharveng, L., Lourenco, W.R., Cruaud, C. and Hassanin, A. (2011) Nucleotide Composition of CO1 Sequences in Chelicerata (Anthropoda): Detecting New Mitogenomic Rearrangements. Research Gate, 1-16.
[17]  Pappalardo, A.M., Guarino, F., Simona, R., Messina, A. and De Pinto, V. (2011) Geographically Widespread Swordfish Barcode Stock Identification: A Case Study of Its Application. PLoS ONE, 6, 1-10.
https://doi.org/10.1371/journal.pone.0025516
[18]  McMillen-Jackson, A.L. and Bert, T.M. (2004) Mitochondrial DNA Variation and Population Genetic Structure of the Blue Crab Callinectes sapidus in the Eastern United States. Marine Biology, 145, 769-777.
[19]  Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA Primers for Amplification of Mitochondrial Cytochrome C Oxidase Subunit I from Diverse Metazoan Invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
[20]  Woodcock, T.S., Boyle, E.E., Roughley, R.E., Kevan, P.G., Labbee, R.N. and Smith, A.B. (2013) The Diversity and Biogeography of the Coleoptera of Churchill: Insights from DNA Barcoding. BMC Ecology, 13, 1472-6785.
https://doi.org/10.1186/1472-6785-13-40
[21]  Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. and Wilson, A.C. (1989) Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers. Proceedings of the National Academy of Sciences, 86, 6196-6200.
https://doi.org/10.1073/pnas.86.16.6196
[22]  Janczewski, D.N., Modi, W.S., Stephens, J.C. and O'Brien, S.J. (1995) Molecular Evolution of Mitochondrial 12S RNA and Cytochrome B Sequences in the Pantherine Lineage of Felidae. Molecular Biology and Evolution, 12, 690-707.
[23]  Lynch, A.J., McDowell, J.R. and Graves, J.E. (2010) A Molecular Genetic Investigation of the Population Structure of Atlantic Menhaden (Brevoortia tyrannus). Fishery Bulletin, 108, 87-98.
[24]  Mohammed-Geba, K. (2015) Analysis of Genetic Population Structure of an Endangered Serranid Fish Species in the South Korean Waters: A Bioinformatic Simulation. Journal of Applied Biology and Biotechnology, 3, 24-29.
[25]  Thirumaraiselvi, R., Das, S., Ramanadevi, V. and Thangaraj, M. (2015) MtDNA Barcode Identification of Finfish Larvae from Vellar Estruary, Tamilnadu, Notulae Scientia Biologicae, 16-19.
[26]  Rasmussen, R.S., Morrissey M.T. and Hebert, P.D.N. (2009) DNA Barcoding of Commercially Important Salmon and Trout Species (Oncorhynchus and Salmo) North America Journal of Agricultural and Food Chemistry, 57, 8379-8385.
https://doi.org/10.1021/jf901618z
[27]  Hebert, P.D.N., Ratnasingham, S. and de Waard, J.R. (2003) Barcoding Animal Life: Cytochrome C Oxidase Subunit 1 Divergences among Closely Related Species. Proceedings of the Royal Society of London B: Biological Sciences, 270, S96-S99.
https://doi.org/10.1098/rsbl.2003.0025
[28]  Pegg, G.G., Sinclair, B., Briskey, L. and Aspden, W.J. (2006) MtDNA Barcode Identification of Fish Larvae in the Southern Great Barrier Reef-Australia. Scientia Marina, 70, 7-12.
https://doi.org/10.3989/scimar.2006.70s27
[29]  Pereira, L.H.G., Hanner, R., Foresti, F. and Oliveira, C. (2013) Can DNA Barcoding Accurately Discriminate Megadiverse Neotropical Freshwater Fish Fauna? BMC Genetics, 14, 20.
https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-14-20
https://doi.org/10.1186/1471-2156-14-20
[30]  Davin, B. (2013) Evidence of Striped Bass Spawning in the Chattahoochee River above West Point and Walter K George Reservoirs, Georgia. Georgia Journal of Science, 118-129.
[31]  Waters, M., Patrick, C.H. and Golladay, S.W. (2013) The Paleolimnology of Lake Seminole, GA: Phosporus Heavy Metals, Cyanbacteria and Two Invasive Species. 2013 Georgia Water Resources Conference, Athens, 10-11 April 2013, 1-6.
[32]  Schubauer-Berigan, J.P., Foote, E.A. and Magar, V.S. (2012) Using Spmds to Assess Natural Recovery of PCB-Contaminated Sediments in Lake Hartwell, SC: I. A Field Test of New In-Situ Deployment Methods. Soil & Sediment Contamination, 21, 82-100.
https://doi.org/10.1080/15320383.2012.636777
[33]  Walsh, P.S., Metzger, D.A. and Higuchi, R. (1991) Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques, 10, 506-513.
[34]  Ivanova, N., Zemlak, T., Hanner, R.H. and Hebert, P.D.N. (2007) Universal Primer Cocktails for Fish DNA Barcoding. Molecular Ecology Notes, 7, 544-548.
https://doi.org/10.1111/j.1471-8286.2007.01748.x
[35]  Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948.
https://doi.org/10.1093/bioinformatics/btm404
[36]  Librado, P. and Rozas, J. (2009) DNASP V5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinfromatics, 25, 1451-1452.
https://doi.org/10.1093/bioinformatics/btp187
[37]  Excoffier, L. and Lischer, H.E.L. (2010) Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
https://doi.org/10.1111/j.1755-0998.2010.02847.x
[38]  Teacher, A.G. and Griffiths, D.J. (2010) HapStar: Automated Haplotype Network Layout and Visualization. Molecular Ecology Resources, 11, 151-153.
https://doi.org/10.1111/j.1755-0998.2010.02890.x
[39]  Brönmark, C., Hulthén, K., Nilsson, P.A., Skov, C., Hansson, L.-A., Brodersen, J. and Chapman, B.B. (2013) There and Back Again: Migration in Freshwater Fishes. Canadian Journal of Zoology, 92, 467-479.
https://doi.org/10.1139/cjz-2012-0277
[40]  Parsons, B.G. and Reed, J.R. (2011) Movement of Black Crappies and Bluegills among Interconnected Lakes in Minnesota. North American Journal of Fisheries Management, 25, 689-695.
https://doi.org/10.1577/M04-021.1
[41]  Koupla, K. and Katt, J.D. (2010) Assessment of Adult Crappie Abundance during the Spawning Season in Specific Coves, Larval Crappie Production, Entrainment, and Response to Artificial Walleye Spawning Substrate in Sherman Reservoir. Project No. F-166-R, 1-31.
[42]  Guy, C.S., Neumann, R.M. and Willias, D.W. (1992) Movement Patterns of Adult Black Crappie, Pomoxis Nigromaculatus, in Brant Lake, South. Journal of Freshwater Ecology, 7, 137-147.
https://doi.org/10.1080/02705060.1992.9664679
[43]  Haponski, A.E., Marth, T.A. and Stepien, C.A. (2007) Genetic Divergence across a Low-Head Dam: A Preliminary Analysis Using Logperch and Greenside Darters. Journal of Great Lakes Research, 33, 117-126.
https://doi.org/10.3394/0380-1330(2007)33[117:GDAALD]2.0.CO;2
[44]  Raeymaekers, J.A.M., Maes, G.E., Geldof, S., Hontis, I., Nackaerts, K. and Volckaert, F.A.M. (2008) Modeling Genetic Connectivity in Sticklebacks as a Guideline for River Restoration. Evolutionary Applications, 1, 475-488.
https://doi.org/10.1111/j.1752-4571.2008.00019.x
[45]  Gouskov, A. and Vorburger, C. (2015) River Fragmentation and Fish Population Structure: A Comparison of Three Swiss Midland Rivers. Freshwater Science, 25, 689-700.
[46]  Hocutt, C.H. and Wiley, E.O. (1986) The Zoogeography of North American Freshwater Fishes. Wiley-Interscience, Hoboken, New Jersey.
[47]  Maurakis, E.G. and Lipscomb, D.L. (1999) Historical Relationships of Atlantic Slope River Drainages. Virginia Journal of Science, 50, 1-11.
[48]  Near, T.J., Kassler, T.W., Koppelman, J.B., Dillman, C.B., Philipp, D.P. and Orti, G. (2003) Speciation in North American Black Basses, Micropterus (Actinopterygii: Centrarchidae). Evolution, 57, 1610-1621.
https://doi.org/10.1111/j.0014-3820.2003.tb00368.x

Full-Text

comments powered by Disqus