All Title Author
Keywords Abstract

Computational Study on the Comparative Differences in the Activity of Inhibitors of Human versus Rat Alpha-Glucosidase

DOI: 10.4236/ojmc.2017.72002, PP. 19-28

Keywords: Homology Modeling, MM/PBSA, Alpha-Glucosidase, Salacinol, Acarbose, Species Difference

Full-Text   Cite this paper   Add to My Lib


Differences between the inhibitory activities of specific compounds on analogous enzymes isolated from different animal species are one of the critical issues to evaluate when exploring structure-activity relationships. The activity of acarbose is about ten times stronger in rat than in human, and that of neosalacinol is similar in both species. Binding affinities of acarbose and neosalacinol to four catalytic domains of alpha-glucosidases in human and rat were compared to investigate the cause of activity differences among species. Species difference was brought about complicatedly by the balance of interaction with four domains, and the result was indicated that larger ligand would show larger species difference in activity.


[1]  Gray, G.M., Lally, B.C. and Conklin, K.A. (1979) Action of Intestinal Sucrase-Isomaltase and Its Free Monomers on an α-Limit Dextrin. The Journal of Biological Chemistry, 254, 6038-6043.
[2]  Ernst, H.A., Leggio, L.L., Willemoes, M., Leonard, G., Blum, P. and Larsen, S. (2006) Structure of the Sulfolobus Solfataricus Alpha-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358, 1106-1124.
[3]  Ren, L., Cao, X., Geng, P., Bai, F. and Bai, G. (2011) Study of the Inhibition of Two Human Maltase-Glucoamylases Catalytic Domains by Different α-Glucosidase Inhibitors. Carbohydrate Research, 346, 2688-2692.
[4]  Tanabe, G., Yoshikai, K., Hatanaka, T., Yamamoto, M., Shao, Y., Minematsu, T., Muraoka, O., Wang, T., Matsuda, H. and Yoshikawa, M. (2007) Biological Evaluation of De-O-Sulfonated Analogs of Salacinol, the Role of Sulfate Anion in the Side Chain on the α-Glucosidase Inhibitory Activity. Bioorganic & Medicinal Chemistry, 15, 3926-3937.
[5]  Tanabe, G., Xie, W., Ogawa, A., Cao, C., Minematsu, T., Yoshikawa, M. and Muraoka, O. (2009) Facile Synthesis of De-O-Sulfated Salacinols: Revision of the Structure of Neosalacinol, a Potent α-Glucosidase Inhibitor. Bioorganic & Medicinal Chemistry Letters, 19, 2195-2198.
[6]  Eskandari, R., Jones, K., Rose, D.R. and Pinto, B.M. (2010) Probing the Active-Site Requirements of Human Intestinal N-Terminal Maltase Glucoamylase: The Effect of Replacing the Sulfate Moiety by a Methyl Ether in Ponkoranol, a Naturally Occurring α-Glucosidase Inhibitor. Bioorganic & Medicinal Chemistry Letters, 20, 5686-5689.
[7]  Xie, W., Tanabe, G., Akaki, J., Morikawa, T., Ninomiya, K., Minematsu, T., Yoshikawa, M., Wu, X. and Muraoka, O. (2011) Isolation, Structure Identification and SAR Studies on Thiosugar Sulfonium Salts, Neosalaprinol and Neoponkoranol, as Potent α-Glucosidase Inhibitors. Bioorganic & Medicinal Chemistry, 19, 2015-2022.
[8]  Nakamura, S., Takahira, K., Tanabe, G., Morikawa, T., Sakano, M., Ninomiya, K., Yoshikawa, M., Muraoka, O. and Nakanishi, I. (2010) Docking and SAR Studies of Salacinol Derivatives as α-Glucosidase Inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 4420-4423.
[9]  Mowbray, C.E., Bell, A.S., Clarke, N.P., Collins, M., Jones, R.M., Lane, C.A., Liu, W.L., Newman, S.D., Paradowski, M., Schenck, E.J., Selby, M.D., Swain, N.A. and Williams, D.H. (2011) Challenges of Drug Discovery in Novel Target Space. The Discovery and Evaluation of PF-3893787: A Novel Histamine H4 Receptor Antagonist. Bioorganic & Medicinal Chemistry Letters, 21, 6596-6602.
[10]  Morikawa, T., Miyake, S., Akaki, J., Ninomiya, K., Yoshikawa, M. and Muraoka, O. (2012) Quantitative analysis of Thiosugar Sulfoniums, Potent Alpha-Glucosidase Inhibitors from Salacia Species, Using LC-MS. 26th International Carbohydrate Symposium (ICS26).
[11]  Chiasson, J.L., Josse, R.G., Gomis, R., Hanefeld, M., Karasik, A. and Laakso, M. (2002) Acarbose for Prevention of Type 2 Diabetes Mellitus: The STOP-NIDDM Randomised Trial. The Lancet, 359, 2072-2077.
[12]  Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G. and Shen, Y. (2011) Structural Insight into Substrate Specificity of Human Intestinal Maltase-Glucoamylase. Protein & Cell, 2, 827-836.
[13]  Sim, L., Willesma, C., Mohan, S., Naim, Y.H., Pinto, B.M. and Rose, D.R. (2010) Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-Terminal Domains. Journal of Biological Chemistry, 285, 17763-17770.
[14]  Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U. and Sali, A. (2006) Unit 5.6. Comparative Protein Structure Modeling Using Modeller. In: Current Protocols in Bioinformatics, Chapter 5, Wiley, Hoboken.
[15]  Nakamura, S., Takahira, K., Tanabe, G., Muraoka, O. and Nakanishi, I. (2012) Homology Modeling of Human Alpha-Glucosidase Catalytic Domains and SAR Study of Salacinol Derivatives. Open Journal of Medicinal Chemistry, 2, 50-60.
[16]  Sali, A. and Blundell, T.L. (1993) Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology, 234, 779-815.
[17]  Labute, P. (2009) Protonate3D: Assignment of Ionization States and Hydrogen Coordinates to Macromolecular Structures. Proteins, 75, 187-205.
[18]  MOE Ver (2013) Chemical Computing Group Inc., Montreal, Canada.
http://www. chemcomp. com/
[19]  Sim, L., Quezada-Calvillo, R., Sterchi, E.E., Nichols, B.L. and Rose, D.R. (2008) Human Intestinal Maltase-Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. Journal of Molecular Biology, 375, 782-792.
[20]  Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A. and Cheatham III, T.E. (2000) Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Accounts of Chemical Research, 33, 889-897.
[21]  Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.E., DeBolt, S., Ferguson, D., Seibel, G. and Kollman, P. (1995) AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules. Computer Physics Communications, 91, 1-41.
[22]  Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A. and Simmerling, C. (2006) Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins, 65, 712-725.
[23]  Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case III, D.A. (2004) Development and Testing of a General Amber Force Field. Journal of Computational Physics, 25, 1157-1174.
[24]  Christopher, I.B., Piotr, C., Wendy, C. and Peter, A.K. (1993) A Well-Behaved Electro-Static Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. The Journal of Physical Chemistry, 97, 10269-10280.
[25]  Miller III, B.R., McGee Jr., T.D., Swails, J.M., Homeyer, N., Gohlke, H. and Roitberg, A.E. (2012) An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8, 3314-3321.
[26]  Hawkins, G.D., Cramer, C.J. and Truhlar, D.G. (1996) Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium. The Journal of Physical Chemistry, 100, 19824-19839.
[27]  Kongsted, U. and Ryde, U. (2009) An Improved Method to Predict the Entropy Term with the MM/PBSA Approach. The Journal of Computer-Aided Molecular Design, 23, 63-71.
[28]  Benkert, P., Biasini, M. and Schwede, T. (2011) Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics, 27, 343-350.
[29]  Jones, K., Sim, L., Mohan, S., Kumarasamy, J., Liu, H., Avery, S., Naim, H.Y., Quezada-Calvillo, R., Nichols, B.L., Pinto, B.M. and Rose, D.R. (2011) Mapping the Intestinal Alpha-Glucogenic Enzyme Specificities of Starch Digesting Maltase-Glucoamylase and Sucrase-Isomaltase. Bioorganic & Medicinal Chemistry, 19, 3929-3934.
[30]  Tanabe, G., Nakamura, S., Tsutsui, N., Balakisian, G., Xie, W., Tsuchiya, S., Akaki, J., Morikawa, T., Ninomiya, K., Nakanishi, I., Yoshikawa, M. and Muraoka, O. (2012) In Silico Design, Synthesis and Evaluation of 3’-O-Benzylated Analogs of Salacinol, a Potent α-Glucosidase Inhibitor Isolated from an Ayurvedic Traditional Medicine “Salacia”. Chemical Communications, 48, 8646-8648.
[31]  Tanabe, G., Xie, W., Balakishan, G., Amer, M.F., Tsutsui, N., Takemura, H., Nakamura, S., Akaki, J., Ninomiya, K., Morikawa, T., Nakanishi, I. and Muraoka, O. (2016) Hydrophobic Substituents Increase the Potency of Salacinol, a Potent α-Glucosidase Inhibitor from Ayurvedic Traditional Medicine “Salacia”. Bioorganic & Medicinal Chemistry, 24, 3705-3715.


comments powered by Disqus