All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

CuO- Nanocomposite: An Efficient Recyclable Catalyst for the Synthesis of Aryl-14 H -dibenzo[a-j]xanthenes

Ferric hydrogensulfate catalyzed synthesis of aryl 14H-dibenzo[a,j] xanthene derivatives under thermal and solvent-free conditions

MANGANESE PERCHLORATE CATALYZED EFFICIENT GREENER SONOCHEMICAL SYNTHESIS OF ARYL-14-H-DIBENZO [3, J] XANTHENES AND 4-SUBSTITUTED 2H-CHROMEN-2-ONES Manganperchlorat katalysierten EFFICIENT GREENER Sonochemische Synthese von Aryl-14-H-DIBENZO [3, J] Xanthene und 4-substituierten 2H-chromen-2-one

Design, Synthesis and Antiviral Potential of 14-Aryl/Heteroaryl-14H-dibenzo[a,j]xanthenes Using an Efficient Polymer-Supported Catalyst

Microwave-assisted solvent-free synthesis of 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes and tetrahydrobenzo[a]xanthen-11-ones catalyzed by nano silica phosphoric acid

Solvent-Free Synthesis of 1,8-Dioxo-octahydroxanthenes and 14-Aryl-14H-dibenzo[a,j]xanthenes using Saccharin Sulfonic Acid as an Efficient and Green Catalyst

Solvent-Free Synthesis of 1,8-Dioxo-octahydroxanthenes and 14-Aryl-14H-dibenzo[a,j]xanthenes using Saccharin Sulfonic Acid as an Efficient and Green Catalyst


ULTRASOUND ASSISTED EFFICIENT AND GREENER ONE POT SYNTHESIS OF ARYL-14-H-DIBENZO [a,j]XANTHENE DERIVATIVES Ultraschall unterstützt effizientere und umweltfreundlichere ONE Eintopfsynthese ARYL-14-H-dibenzo [a, j] Xanthenderivate

Synthesis of a New Chiral Pyrrolidine


L-Pyrrolidine-2-Carboxylic Acid Sulfate (LPCAS): A New Ionic Liquid for the Synthesis of 14-Aryl-14H-Dibenzo[a,j] Xanthenes under Solvent Free Condition

DOI: 10.4236/ijoc.2017.72009, PP. 99-105

Keywords: Ionic Liquid, 14-Aryl-14H-Dibenzo[a,j] Xanthenes, Solvent-Free

Full-Text   Cite this paper   Add to My Lib


A new Bronsted acidic ionic liquid, L-Pyrrolidine-2-carboxylic acid sulfate (LPCAS) was employed to promote one-pot synthesis of 14-aryl-14H-dibenzo [a,j] xanthenes via condensation reaction of aldehydes and 2-naphthol under solvent free condition. Distinguishing features of the methodology are excellent yield of products in shorter reaction time, cleaner reaction profile, eco-friendly nature and the use of inexpensive catalyst.


[1]  Kumar, R., Nandi, G.C., Verma, R.K. and Singh, M.S. (2010) A Facile Approach for the Synthesis of 14-aryl-oralkyl-14H-dibenzo[a,j]xanthenes under Solvent-Free Condition. Tetrahedron Letters, 51, 442-445.
[2]  Hideu, T. (1981) Benzopyrano[2,3-b]xanthenes Derivatives. Chemical Abstracts, 95, 80922b.
[3]  Isao, H. and Shozo, T. (1998) Preparation of Benzoxanthene Derivatives Exhibiting Antiviral Activity. PCT International Applications, 129, Article ID: 260282.
[4]  Poupelin, J.P., Saint-Rut, G., Fussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. and Lakroix, R. (1978) Synthesis and Antiinflammatory Properties of Bis(2-Hy- droxy, 1-Naphthyl) Me thane Derivatives. European Journal of Medicinal Chemistry, 13, 67-71.
[5]  Bhowmik, B.B. and Ganguly, P. (2005) Photophysics of Xanthene Dyes in Surfactant Solution. Spectrochimica Acta, 61, 1997-2003.
[6]  Rewcastle, G.W., Atwell, G.J., Zhuang, L., Baguley, B.C. and Denny, W.A. (1991) Journal of Medicinal Chemistry, 34, 217-222.
[7]  Chibale, K., Visser, M., Schalkwyk, D.V., Smith, P.J., Saravanamuthu, A. and Fairlamb, A.H. (2003) Exploring the Potential of Xanthenes Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents. Tetrahedron, 59, 2289-2296.
[8]  Knight, C.G. and Stephens, T. (1989) Xanthene-Dye-Labelled Phosphatidylethanolamines as Probes of Interfacial pH Studies in Phospholipid Vesicles. Biochemical Journal, 258, 683-687.
[9]  Ahmad, M., King, T.A., Ko, D.K., Cha, B.H. and Lee, J. (2002) Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol Gel Phases. Journal of Physics D: Applied Physics, 35, 1473-1476.
[10]  Shakibaei, G.I., Mirzaei, P. and Bazgir, A. (2007) Dowex-50W Promoted Synthesis of 14-aryl-14H-dibenzo[a,j] Xanthenes and 1,8-dioxo-octahydroxanthene Derivatives under Solvent-Free Conditions. Applied Catalysis A: General, 325, 188-192.
[11]  Pasha, M.A. and Jayashankara, V.P. (2007) Molecular Iodine Catalyzed Synthesis of Aryl-14Hdibenzo[a, j] Xanthenes under Solvent Free Condition. Bioorganic & Medicinal Chemistry Letters, 17, 621-623.
[12]  Amini, M.M., Seyyedhamzeh, M. and Bazgir, A. (2007) Heteropolyacid: An Efficient and Eco-Friendly Catalyst for the Synthesis of 14-aryl-14H-dibenzo[a,j] Xanthenes. Applied Catalysis A: General, 323, 242-245.
[13]  Esmaeilpour, M., Javidi, J., Dehghani, F. and Dodeji, F.N. Fe3O4@SiO2-imid- PMAn Magnetic Porous Nanosphere as Recyclable Catalyst for the One-Pot Synthesis of 14-aryl-or alkyl-14H-dibenzo[a,j]xanthenes and 1,8dioxooctahydroxanthenes Derivatives under Various Conditions. New Journal of Chemistry.
[14]  Sharifi, A., Abaee, M.S., Tavakkoli, A., Mirzaei, M. and Zolfaghari, A. (2008) Facile Montmo rillonite K-10-Supported Synthesis of Xanthene Derivatives under Microwave and Thermal Conditions. Synthetic Communications, 38, 2958-2966.
[15]  Zare, A., Moosavi-Zare, A.R., Merajoddin, M., Zolfigol, M.A., Hekmat-Zadeh, T., Hasaninejad, A., Khazaei, A., Mokhlesi, M., Khakyzadeh, V., Derakhshan-Panah, F., Beyzavi, M.H., Rostami, E., Arghoon, A. and Roohandeh, R. (2012) Ionic Liquid Triethylamine Bonded Sulfonic Acid {[Et3N-SO3H]Cl} as a Novel, Highly Efficient and Homogeneous Catalyst for the Synthesis of β-Acetamido ketones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes. Journal of Molecular Liquids, 167, 69-77.
[16]  Naeimi, H. and Nazifi, Z.S. (2014) Environmentally Benign and One-Pot Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes Catalyzed by Acyclic Bronsted Acidic Ionic Liquid [H-NMP][HSO4] under Green Conditions. C. R. Chimie, 17, 41-48.
[17]  Ziarani, G.M., Badiei, A.R. and Azizi, M. (2011) The One-Pot Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes Derivatives Using Sulfonic Acid Functionalized silica (SiO2-Pr-SO3H) under Solvent Free Conditions. Scientia Iranica, 18, 453-457.
[18]  Liu, Y., Tao, X., Lei, L. and Zhang, Z. (2009) Fluoroboric Acid Adsorbed on Silica-Gel-Catalyzed Synthesis of 14-Aryl-14Hdibenzo[a,j]xanthenes Derivatives. Synthetic Communications, 39, 580-589.
[19]  Khaligh N.G. and Shirini F. (2014) N-sulfonic Acid Poly(4-vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst for One-Pot Synthesis of Xanthene Derivatives in Dry Media under Ultrasound Irradiation. Ultrasonics Sonochemistry, 22, 397-403.
[20]  Wu, H., Chen, X., Wan, Y., Xin, H., Xu, H., Yue, C., Pang, L. and Ma, R. (2009) Synthesis and Luminescence of 14-Arylor Al-kyl-14H-dibenzo[a,j]xanthenes Catalyzed by 2-10-Methylimidazolium-3-yl-1-ethyl Sulfate. Synthetic Communications, 39, 3762-377.
[21]  Thorat, V.V., Dake, S.A., Deshmukh, S.U., Rasokkiyam, E., Farees Uddin, M. and Pawar, R.P. (2013) Ionic Liquid Mediated Synthesis of Novel Tetrahydroimidazo [1,2-a]pyrimidine-6-carboxylate Derivatives. Letters in Organic Chemistry, 10, 178-184.
[22]  Shinde Pravin, S., Shinde Sandip, S., Dake Satish, A., Sonekar Vinayak, S., Deshmukh Satish, U., Thorat Vinod, V., Andurkar Narsing, M. and Pawar Rajendra, P. (2014) CsF/[bmim][BF4]: An Efficient and Reusable System for Henry Reaction. Arabian Journal of Chemistry, 7, 1013-1016.
[23]  Godse, V.W., Darandale, S.N., Rindhe, S.S., Parandkar, Y.R., Desai, R.D., Zaware, B.H., Jadhav, S.S. and Pawar, R.P. (2016) Novel Bronsted Acidic Ionic Liquid L-pyrrolidine-2-carboxylic Acid Sulphate: An Efficient and Ecofriendly Catalyst for Synthesis of 2,4,5-trisubstituted-1H-imidazoles under Solvent Free Conditions. European Chemical Bulletin, 5, 280-282.
[24]  Bhattacharya, A.K. and Rana, K.C. (2007) Micro-wave-Assisted Synthesis of 14-aryl-14H-dibenzo[a.j]xanthenes Catalysed by Methanesulfonic Acid under Solvent-Free Conditions, Mendeleev Communications, 17, 247-248.
[25]  Rivera, T.S., Blanco, M.N., Pizzio, L.R. and Romanelli, G.P. (2012) Green Catalytic Synthesis of 14-aryl-14Hdibenzo-[a,j]xanthenes Using Recyclable Mesoporous Zirconia Modified with Tungstophosphoric Acid. Green Chemistry Letters and Reviews, 5, 433-437.


comments powered by Disqus