We give a characterization of the boundaries of smooth strictly convex sets in the Euclidean plane R2?based on the existence and uniqueness of inscribed triangles.
References
[1]
Blaschke, W. (1916) Kreis und Kugel. Verlag von Veit & Comp, Leipzig.
[2]
Boltyanski, V., Martini, H. and Soltan, P.S. (1997) Excursion into Combinatorial Geometry. Springer-Verlag, Heidelberg. https://doi.org/10.1007/978-3-642-59237-9
[3]
Bonnesen, T. and Fenchel, W. (1974) Theorie der konvexen Körper. Springer-Ver-lag, Heidelberg. https://doi.org/10.1007/978-3-642-93014-0
Webster, R. (1994) Convexity. Oxford University Press, Oxford.
[6]
Menger, K. (1931) Some Applications of Point Set Methods. Annals of Mathematics, 32, 739-750. https://doi.org/10.2307/1968317
[7]
Juul, K. (1975) Some Three-Point Subset Properties Connected with Menger’s Characterization of Boundaries of Plane Convex Sets. Pacific Journal of Mathematics, 58, 511-515. https://doi.org/10.2140/pjm.1975.58.511
[8]
Mani-Levitska, P. (1993) Characterization of Convex Sets. In: Gruber, P.M. and Wills, J.M., Eds., Handbook of Convex Geometry, North-Holland, 19-41.
[9]
Kramer, H. (1978) A Characterization of Boundaries of Smooth Strictly Convex Plane Sets. Revue d’analyse numérique et de théorie de l'approximation, 7, 61-65.
[10]
Kramer, H. (1979) Boundaries of Smooth Strictly Convex Plane Sets. Revue d’analyse numérique et de théorie de l'approximation, 8, 59-66.
[11]
Kramer, H. and Németh, A.B. (1972) Triangles Inscribed in Smooth Closed Arcs. Revue d’analyse numérique et de théorie de l'approximation, 1, 63-71.
[12]
Caratheodory, C. (1911) Ueber den Variabilitaetsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo, 32, 193-217. https://doi.org/10.1007/BF03014795