All Title Author
Keywords Abstract


Boundaries of Smooth Strictly Convex Sets in the Euclidean Plane R2

DOI: 10.4236/ojdm.2017.72008, PP. 71-76

Keywords: Strict Convexity, Smoothness, Supporting Lines, Inscribed Triangles

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give a characterization of the boundaries of smooth strictly convex sets in the Euclidean plane R2?based on the existence and uniqueness of inscribed triangles.

References

[1]  Blaschke, W. (1916) Kreis und Kugel. Verlag von Veit & Comp, Leipzig.
[2]  Boltyanski, V., Martini, H. and Soltan, P.S. (1997) Excursion into Combinatorial Geometry. Springer-Verlag, Heidelberg.
https://doi.org/10.1007/978-3-642-59237-9
[3]  Bonnesen, T. and Fenchel, W. (1974) Theorie der konvexen Körper. Springer-Ver-lag, Heidelberg.
https://doi.org/10.1007/978-3-642-93014-0
[4]  Valentine, F.A. (1968) Konvexe Mengen. Hochschultaschenbücher-Verlag, Mannheim.
[5]  Webster, R. (1994) Convexity. Oxford University Press, Oxford.
[6]  Menger, K. (1931) Some Applications of Point Set Methods. Annals of Mathematics, 32, 739-750.
https://doi.org/10.2307/1968317
[7]  Juul, K. (1975) Some Three-Point Subset Properties Connected with Menger’s Characterization of Boundaries of Plane Convex Sets. Pacific Journal of Mathematics, 58, 511-515.
https://doi.org/10.2140/pjm.1975.58.511
[8]  Mani-Levitska, P. (1993) Characterization of Convex Sets. In: Gruber, P.M. and Wills, J.M., Eds., Handbook of Convex Geometry, North-Holland, 19-41.
[9]  Kramer, H. (1978) A Characterization of Boundaries of Smooth Strictly Convex Plane Sets. Revue d’analyse numérique et de théorie de l'approximation, 7, 61-65.
[10]  Kramer, H. (1979) Boundaries of Smooth Strictly Convex Plane Sets. Revue d’analyse numérique et de théorie de l'approximation, 8, 59-66.
[11]  Kramer, H. and Németh, A.B. (1972) Triangles Inscribed in Smooth Closed Arcs. Revue d’analyse numérique et de théorie de l'approximation, 1, 63-71.
[12]  Caratheodory, C. (1911) Ueber den Variabilitaetsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo, 32, 193-217.
https://doi.org/10.1007/BF03014795

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal