All Title Author
Keywords Abstract


煤岩有机显微组分分离与应用的现状与分析
Present Situation and Analysis of Macerals Separation and Utilization Technologies

DOI: 10.12677/CCE.2016.44004, PP. 25-32

Keywords: 显微组分,浮选,摩擦电选,热解,气化,液化
Macerals
, Flotation, Triboelectrostatic Separation, Pyrolysis, Gasification, Liquefaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着石油资源的紧缺和煤炭加工带来的环境污染日趋严重,煤炭资源的清洁和高效利用成为当下的热点课题。煤岩有机显微组分可以将煤中有用的有机质主要分为三种:壳质组、镜质组和惰质组。分离煤中显微组分并根据显微组分不同的特性进行煤炭深加工如热解、气化和液化,可以有效提高煤炭利用率且缓解石油资源短缺的现状。本文对当前煤岩有机显微组分的分离和应用技术研究进展进行了介绍,分析了其发展方向和前景。
Along with serious environmental pollution caused by coal combustion as well as the scarcity of oil resource, high efficient and clean utilization of coal resource has becoming the immediate research focus. The useful organic matter in coal can be classified into three coal maceral types: exinite, vitrinite and inertinite. The separation and the further processing technologies such as pyrolysis, gasification and liquefaction of macerals according their different features could improve coal utilization rate effectively and lighten oil resource’s shortage. In this paper, the research progress of macerals separation and utilization technique is introduced and the further development and improvement are analyzed.

References

[1]  Zhang, L., Liu, W.L. and Men, D.P. (2014) Preparation and Coking Properties of Coal Maceral Concentrates. International Journal of Mining Science and Technology, 24, 93-98. https://doi.org/10.1016/j.ijmst.2013.12.016
[2]  Dyrkacz, G.R., Bloomquist, C.A.A. and Horwitz, E.P. (1981) Laboratory Scale Separation of Coal Macerals. Separation Science and Technology, 16, 1571-1588. https://doi.org/10.1080/01496398108058316
[3]  Arnold, B.J. and Aplan, F.F. (1986) Coal Froth Flotation: The Response of Coal and Mineral Particles to Reagent and Circuit Variations: Advances in Mineral Processing. Society of Mining Engineers, 351.
[4]  Honaker, R.Q., Mohanty, M.K. and Crelling, J.C. (1996) Coal Maceral Separation Using Column Flotation. Minerals En-gineering, 9, 449-464. https://doi.org/10.1016/0892-6875(96)00030-1
[5]  Shu, X.Q., Wang, Z.N. and Xu, J.Q. (2002) Separation and Preparation of Macerals in Shenfu Coals by Flotation. Fuel, 811, 495-501. https://doi.org/10.1016/S0016-2361(01)00106-5
[6]  Barraza, J. and Pineres, J. (2005) A Pilot-Scale Flotation Column to Produce Beneficiated Coal Fractions Having High Concentration of Vitrinite Maceral. Fuel, 84, 1879-1883. https://doi.org/10.1016/j.fuel.2005.03.021
[7]  Jorjani, E., Esmaeili, S. and Khorami, M.T. (2013) The Effect of Particle Size on Coal Maceral Group’s Separation Using Flotation. Fuel, 114, 10-15. https://doi.org/10.1016/j.fuel.2012.09.025
[8]  Xie, W., Stanger, R., Lucas, J., et al. (2013) Coal Macerals Separation by Reflux Classification and Thermo-Swelling Analysis Based on the Computer Aided Thermal Analysis. Fuel, 103, 1023-1031. https://doi.org/10.1016/j.fuel.2012.07.061
[9]  Tran, Q.A., Stanger, R., Xie, W., et al. (2016) Maceral Separation from Coal by the Reflux Classifier. Fuel Processing Technology, 143, 43-50. https://doi.org/10.1016/j.fuproc.2015.11.009
[10]  Inculet, I.I., Bergougnou, M.A. and Brown, J.D. (1982) Electrostatic Beneficiation of Coal. In: Liu, Y.A., Ed., Physical Cleaning of Coal—Present and Developing Methods, Marcel Dekker, New York, 87-131.
[11]  Zhou, G. and Brown, J.D. (1988) Coal Surface Conditioning for Electrostatic Separation. The Canadian Journal of Chemical Engineering, 66, 858-863. https://doi.org/10.1002/cjce.5450660521
[12]  Hower, J.C., Ban, H., Schaefer, J.L. and Stencel, J.M. (1997) Maceral/Microlithotype Partitioning through Triboelectrostatic Dry Coal Cleaning. International Journal of Coal Geology, 34, 277-286. https://doi.org/10.1016/S0166-5162(97)00026-8
[13]  谢克昌, 李文英, 朱素渝. 用差热分析技术研究煤岩显微组分的加压气化动力学[J]. 燃料化学学报, 1994, 22(3): 276-280.
[14]  孙庆雷, 李文, 李保庆. 神木煤显微组分半焦的气化特性和气化动力学研究[J]. 煤炭学报, 2002, 27(1): 92-96.
[15]  Xie, K., Lin, J., Li, W., Chang, L., Feng, J. and Zhao, W. (2005) Formation of HCN and NH3 during Coal Macerals Pyrolysis and Gasification with CO2. Fuel, 84, 271-277. https://doi.org/10.1016/j.fuel.2004.07.012
[16]  丁华, 姜英, 李文华. 升温速率及水蒸气分压改变对神华煤焦及其显微组分焦气化反应性的影响[J]. 煤炭技术, 2009, 13(6): 64-67.
[17]  Wang, J.H. and Chang, L.P. (2015) Pyrolysis and Gasification Reactivity of Several Typical Chinese Coals and Their Macerals. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 37, 670-678. https://doi.org/10.1080/15567036.2011.594857
[18]  Li, W., Huo, W., Shu, G., Bai, X. and Dai, H. (2001) Hydroliquefaction Cha-racteristic of Majiata Coal and Its Macerals Components. Journal of Fuel Chemistry and Technology, 29, 104-107.
[19]  叶道敏. 霍林河褐煤显微组分加氢液化性状的研究[J]. 煤田地质与勘探, 2005, 33(6): 1-5.
[20]  陈洪博, 郭治. 神东煤不同显微组分加氢液化性能及转化规律[J]. 煤炭转化, 2006, 29(4): 9-12.
[21]  陈洪博, 李文华, 姜英, 等. 神东煤液化残渣显微组分的特征与分类研究[J]. 燃料化学学报, 2006, 34(5): 513- 518.
[22]  Feng, J., Lia, J. and Li, W. (2013) Influences of Chemical Structure and Physical Properties of Coal Macerals on Coal Liquefaction by Quantum Chemistry Calculation. Fuel Processing Technology, 109, 19-26. https://doi.org/10.1016/j.fuproc.2012.09.033
[23]  Jin, L., Han, K., Wang, J. and Hu, H. (2014) Direct Liquefaction Behaviors of Bulianta Coal and Its Macerals. Fuel Processing Technology, 128, 232-237. https://doi.org/10.1016/j.fuproc.2014.07.033
[24]  路继根, 邱建荣, 沙兴中, 等. 用热重法研究我国四种煤显微组分的燃烧特性[J]. 燃料化学学报, 1996, 24(4): 329-334.
[25]  张军, 汉春利, 王夕华, 等. 煤显微组分富集物燃烧特性滴管炉试验研究[J]. 燃料科学与技术, 2002, 8(5): 403- 406.
[26]  孙庆雷, 李文李, 保庆. 神木煤显微组分半焦燃烧特性[J]. 化工学报, 2002, 53(1): 92-95.
[27]  Wang, J.H., Li, F., Chang, L.P. and Xie, K.C. (2011) Combustion Characteristics and Kinetics of Lingwu Coal and Its Macerals. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 33, 529-538. https://doi.org/10.1080/15567030903097020
[28]  Teng, Y., Liu, Y., Liu, Q. and Li, C. (2016) Macerals of Shengli Lignite in Inner Mongolia of China and Their Combustion Reactivity. Journal of Chemistry, 2016, Article ID: 2513275. https://doi.org/10.1155/2016/2513275
[29]  Sun, Q., Li, W., Chen, H. and Li, B. (2006) Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of Shenmu Macerals under Hydrogen and Argon. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 28, 1281-1294. https://doi.org/10.1080/009083190933834
[30]  常海洲, 曾凡桂, 李文英. 煤及其显微组分热解过程中的半焦收缩动力学[J]. 物理化学学报, 2008, 24(4): 675- 680.
[31]  Mo, H., Huang, W. and Machnikowsk, H. (2008) Generation and Expulsion of Petroleum from Coal Macerals Visualized In-Situ during DAC Pyrolysis. International Journal of Coal Geology, 73, 167-184. https://doi.org/10.1016/j.coal.2007.05.005
[32]  Zhao, Y., Hu, H., Jin, L., He, X. and Zhu, S. (2010) Pyrolysis Behavior of Macerals from Weakly Reductive Coals. Energy Fuels, 24, 6314-6320. https://doi.org/10.1021/ef101026u
[33]  王利斌, 孙会青. 神木煤及其显微组分热解过程中气相产物组成的研究[J]. 转化利用, 2011, 17(4): 30-33.
[34]  王利斌, 白效言, 孙会青. 神木煤显微组分热解半焦CO2活化特性研究[J].煤炭燃烧, 2011, 17(2): 46-49.
[35]  Stanger, R., Xie, W., Wall, T., Lucas, J. and Mahoney, M. (2013) Dynamic Behaviour of Coal Macerals during Pyrolysis Associations between Physical, Thermal and Chemical Changes. Proceedings of the Combustion Institute, 34, 2393-2400. https://doi.org/10.1016/j.proci.2012.07.003
[36]  赵伟, 张晓欠, 周安宁. 神府煤煤岩显微组分的浮选分离及富集物的低温热解产物特性研究[J]. 燃料化学学报, 2014, 42(5): 526-533.

Full-Text

comments powered by Disqus