All Title Author
Keywords Abstract


Estimation of Above Ground Biomass in Forests Using Alos Palsar Data in Kericho and Aberdare Ranges

DOI: 10.4236/ojf.2017.72006, PP. 79-96

Keywords: Above Ground Biomass Estimation, Green House Gas, Carbon Credits, Alos Palsar Backscatter, Cross-Polarization, Regression Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Above Ground Biomass is one of the six pools identified in the inventory of forest resources and estimation of greenhouse gas emissions and sinks from the forestry sector. The pool varies by management practices in different agro-ecological or agro-climatic zones in forests. The quantification of above ground biomass (AGB) hence carbon sequestration in forests has been very difficult due to the immense costs required. This research was done to estimate AGB using ALOS PALSAR L band data (HH, HV polarisation) acquired in 2009 in relation with ground measurements data in Kericho and Aberdares ranges in Kenya. Tree data information was obtained from ground measurement of DBH and tree heights in 100 circular plots of 15 m radius, by use of random sampling technique. ALOS PALSAR image is advantageous for its active microwave sensor using L-band frequency to achieve cloud free imageries, and the ability of long wavelength cross-polarization to estimate AGB accurately for tropical forests. The variations result between Natural and plantation forest for measured and estimated biomass in Kericho HV band regression value was 0.880 and HH band was 0.520. In Aberdare ranges HV regression value of 0.708 and HH band regression value of 0.511 for measured and estimated biomass respectively. The variations can be explained by the influence of different management regimes induced human disturbances, forest stand age, density, species composition, and trees diameter distribution. However, further research is required to investigate how strong these factors affect relationship between AGB and Alos Palsar backscatters.

References

[1]  Araújo, T. M., Higuchi, N., & de Carvalho, J. A. (1999). Comparison of Formulae for Biomass Determination in a Tropical Rain Forest Site the State of Pará, Brazil. Forest Ecology and Management, 177, 43-52.
https://doi.org/10.1016/S0378-1127(98)00470-8
[2]  Avtar, R., Takeuchi, W., & Sawada, H. (2012). Full Polarimetric PALSAR Based Land Cover Monitoring in Cambodia for Implementation of REDD Policies. International Journal of Digital Earth, 6, 255-275.
https://doi.org/10.1080/17538947.2011.620639
[3]  Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric Equations for Estimating the Above-Ground Biomass in Tropical Lowland Dipterocarp Forests. Forest Ecology and Management, 257, 1684-1694.
https://doi.org/10.1016/j.foreco.2009.01.027
[4]  Bationo, A., Hartemink, A., Lungu, O., Naimi, M., Okoth, P., Smaling, E., & Thiombiano, L. (2006). African Soils: Their Productivity and Profitability of Fertilizer Use. Abuja: Background Paper Prepared for the African Fertilizer Summit June 2006.
[5]  Beaudoin, A., Le Toan, T., Goze, S., Nezry, E., Lopes, A., Mougin, E., Hsu, C. C., Han, H. C., Kong, J. A., & Shin, R. T. (1994). Retrieval of Forest Biomass from SAR Data. International Journal of Remote Sensing, 15, 2777-2796.
https://doi.org/10.1080/01431169408954284
[6]  Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: A Primer. FAO Forestry Paper 134, Rome: For the Food and Agriculture Organization of the United Nations.
[7]  Brown, S. (2002). Measuring Carbon in Forests: Current Status and Future Challenges. Environmental Pollution, 116, 363-372.
https://doi.org/10.1016/S0269-7491(01)00212-3
[8]  Chambers, J. Q., Santos, J. D., Ribeiro, R. J., & Higuchi, N. (2001). Tree Damage, Allometric Characteristics Using Large-Footprint Lidar. Remote Sensing of Environment, 79, 305-319.
[9]  Chave, J., Andalo, A., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Oceologia, 145, 87-99.
https://doi.org/10.1007/s00442-005-0100-x
[10]  FAO (2004). Global Forest Resources Assessment Updates 2005—Terms and Definitions.
[11]  Husch, B., Beers, T. W., & Kershaw, J. A. (2003). Forest Mensuration. Hoboken, NJ: Wiley & Sons.
[12]  Kasischke, E. S., & Christensen, N. L. J. (1990). Connecting Forest Ecosystem and Microwave Backscatter Models. International Journal of Remote Sensing, 11, 1277-1298.
https://doi.org/10.1080/01431169008955093
[13]  Kinyanjui, J. M., Karachi, M., & Ondimu, K. N. (2014). Estimating Forest Volume and Yield in the Western Blocks of the Mau Forest Complex, Kenya. Journal of Environment, Natural Resources Management and Society, 1, 59-69.
[14]  Lu, D. (2006). The Potential and Challenge of Remote Sensing-Based Biomass Estimation. International Journal of Remote Sensing, 27, 1297-1328.
https://doi.org/10.1080/01431160500486732
[15]  Lu, D., Batistella, M., & Moran, E. (2005). Satellite Estimation of Aboveground Biomass and Impacts of Forest Stand Structure. Photogrammetric Engineering & Remote Sensing, 71, 967-974.
https://doi.org/10.14358/PERS.71.8.967
[16]  Patenaude, G., Milne, R., & Dawson, T. P. (2005). Synthesis of Remote Sensing Approaches for Forest Carbon Estimation: Reporting to the Kyoto Protocol. Environmental Science & Policy, 8, 161-178.
https://doi.org/10.1016/j.envsci.2004.12.010
[17]  Rosillo-Calle, F., De Groot, P., Hemstock, S., & Woods, J. (2006) Biomass Assessment Handbook-Bioenergy for a Sustainable Development. Biomass Assessment Handbook, London: Earthscan.
[18]  Shimada, M., Isoguchi, O., Tadono, T., & Isono, K. (2009). PALSAR Radiometric and Geometric Calibration. IEEE Transactions on Geoscience and Remote Sensing, 47, 3915-3932.
https://doi.org/10.1109/TGRS.2009.2023909
[19]  Sombroek, W. C., Braun, H. M. H., & van der Pouw, B. J. A. (1982). Explanatory Soil Map and Agro-Climatic Zone Map of Kenya (56 p). Report E1, Nairobi: National Agricultural Laboratories, Soil Survey Unit.
[20]  Stein, A. E., van der Meer, F. D. E., & Gorte, B. G. H. E. (1999). Spatial Statistics for Remote Sensing (p. 300). Dordrecht: Kluwer Academic.
[21]  Steininger, M. K. (2000). Satellite Estimation of Tropical Secondary Forest Above-Ground Biomass: Data from Brazil and Bolivia. International Journal of Remote Sensing, 21, 1139-1157.
https://doi.org/10.1080/014311600210119
[22]  Tansey, K., Gregoire, J. M., Stroppiana, D., Sousa, A., Silva, J., Pereira, J. M. C., Boschetti, L., Maggi, M., Brivio, P. A., Fraser, R., Flasse, S., Ershov, D., Binaghi, E., Graetz, D., & Peduzzi, P. (2004). Vegetation Burning in the Year 2000: Global Burned Area Estimates from Spot Vegetation Data. Journal of Geophysical Research, 109, D14S03.
https://doi.org/10.1029/2003JD003598
[23]  Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J., & Ryu, S.-R. (2004). Estimating Aboveground Biomass Using Landsat 7 ETM+ Data across a Managed Landscape in Northern Wisconsin, USA. Remote Sensing of Environment, 93, 402-411.
https://doi.org/10.1016/j.rse.2004.08.008

Full-Text

comments powered by Disqus