All Title Author
Keywords Abstract

Mathematical Multibody Model of a Soft Mounted Induction Motor Regarding Forced Vibrations Due to Dynamic Rotor Eccentricities Considering Electromagnetic Field Damping

DOI: 10.4236/jamp.2017.52032, PP. 346-364

Keywords: Induction Motor, Electromagnetic Field Damping, Rotordynamics, Soft Mounting

Full-Text   Cite this paper   Add to My Lib


The paper presents a mathematical multibody model of a soft mounted induction motor with sleeve bearings regarding forced vibrations caused by dynamic rotor eccentricities considering electromagnetic field damping. The multibody model contains the mass of the stator, rotor, shaft journals and bearing housings, the electromagnetic forces with respect of electromagnetic field damping, stiffness and internal (rotating) damping of the rotor, different kinds of dynamic rotor eccentricity, stiffness and damping of the bearing housings and end shields, stiffness and damping of the oil film of the sleeve bearings and stiffness and damping of the foundation. With this multibody model, the bearing housing vibrations and the relative shaft vibrations in the sleeve bearings can be derived.


[1]  Rao, J.S. (1996) Rotor Dynamics. John Wiley & Sons, New York.
[2]  Vance, J.M., Zeidan, F.J. and Murphy, B. (2010) Machinery Vibration and Rotordynamics. John Wiley & Sons, Inc., Hoboken, New Jersey.
[3]  Gasch, R., Nordmann, R. and Pfützner, H. (2002) Rotordynamik. Springer-Verlag, Berlin-Heidelberg.
[4]  Arkkio, A., Antila, M., Pokki, K., Simon, A. and Lantto, E. (2000) Electromagnetic Force on a Whirling Cage Rotor. IEE Proceedings-Electric Power Applications, 147, 353-360.
[5]  Stoll, R.L. (1997) Simple Computational Model for Calculating the Unbalanced Magnetic Pull on a Two-Pole Turbogenerator Rotor Due to Eccentricity. IEE Proceedings-Electric Power Applications, 144, 263-270.
[6]  Belmans, R., Vandenput, A. and Geysen, W. (1987) Calculation of the Flux Density and the Unbalanced Pull in Two Pole Induction Machines. Archiv der Elektrotechnik, 70, 151-161.
[7]  Seinsch, H.-O. (1992) Oberfelderscheinungen in Drehfeldmaschinen. Teubner, Stuttgart.
[8]  Früchtenicht, J., Jordan, H. and Seinsch, H.O. (1982) Exzentrizitätsfelder als Ursache von Laufinstabilitäten bei Asynchronmaschinen. Archiv für Elektrotechnik, Bd. 65, Teil 1, Seite 271-281, Teil 2, Seite 283-292.
[9]  Werner, U. (2016) Influence of Electromagnetic Field Damping on Forced Vibrations of Induction Rotors Caused by Dynamic Rotor Eccentricity. ZAMM-Journal of Applied Mathematics and Mechanics, 97, 38-59.
[10]  Werner, U. (2010) Theoretical Vibration Analysis of Soft Mounted Electrical Machines Regarding Rotor Eccentricity Based on a Multibody Model,. Multibody System Dynamics, 24, 43-66.
[11]  IEC 60034-14 (2007) Rotating Electrical Machines—Part 14: Mechanical Vibration of Certain Machines with Shaft Heights 56 mm and Higher-Measurement, Evaluation and Limits of Vibration Severity.
[12]  ANSI/API 541 (2004) Form-Wound-Squirrel-Cage Induction Motors-500 Horse Power and Larger. API.
[13]  ISO 10816-1 (1995) Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts—Part 1: General Guidelines (ISO 10816-1:1995).
[14]  ISO 7919-3 (2008) Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Rotating Shafts—Part 3: Coupled Industrial Machines.
[15]  Tondl, A. (1965) Some Problems of Rotor Dynamics. Chapman & Hall, London.
[16]  Lund, J. and Thomsen, K. (1978) A Calculation Method and Data for the Dynamics of Oil Lubricated Journal Bearings in Fluid Film Bearings and Rotor Bearings System Design and Optimization. ASME, New York, 1-28.


comments powered by Disqus