All Title Author
Keywords Abstract

Reduction of Dislocation Densities of Ge Layers Grown on Si Substrates by Using Microwave Plasma Heating and Fabrication of High Hole Mobility MOSFETs on Ge Layers

DOI: 10.4236/msce.2017.51006, PP. 42-47

Keywords: Microwave Plasma Heating, High Hole Mobility, Ge on Si

Full-Text   Cite this paper   Add to My Lib


We have developed a microwave plasma heating technique to rapidly heat the transition metal. W/SiO2 layers were deposited on Ge/Si heterostructures. By heating the W, dislocations in Ge layers originated from lattice mismatch between Ge and Si crystals were reduced drastically. We have fabricated p- MOSFETs on Ge/Si substrates and realized higher mobility of about 380 cm2/ Vs than that of Si p-MOSFET.


[1]  Lee, C.H., Nishimura, T., Tabata, T., Wang, S.K., Nagashio, K., Kita, K. and Toriumi, A. (2010) Ge MOSFETs Performance: Impact of Ge Interface Passivation. 2010 IEEE International Electron Devices Meeting (IEDM), 18-1.
[2]  Maeda, T., Ikeda, K., Nakaharai, S., Tezuka, T., Sugiyama, N., Moriyama, Y. and Takagi, S. (2006) Thin-Body Ge-on-Insulator p-Channel MOSFETs with Pt Germanide Metal Source/Drain. Thin Solid Films, 508, 346-350.
[3]  Kamata, Y. (2008) High-k/Ge MOSFETs for Future Nanoelectronics. Materials Today, 11, 30-38.
[4]  Lee, M.L., Leitz, C.W., Cheng, Z., Antoniadis, D.A. and Fitzgerald, E.A. (2002) Strained Ge Channel p-Type Metal-Oxide-Semiconductor Field-Effect Transistors Grown on Sia a xGex/Si Virtual Substrates.
[5]  Luan, H.C., Lim, D.R., Lee, K.K., Chen, K.M., Sandland, J.G., Wada, K. and Kimerling, L.C. (1999) High-Quality Ge Epilayers on Si with Low Threading-Dislocation Densities. Applied Physics Letters, 75, 2909-2911.
[6]  Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W. and Fitzgerald, E.A. (1998) Con-trolling Threading Dislocation Densities in Ge on Si Using Graded SiGe Layers and Chemical-Mechanical Polishing. Applied Physics Letters, 72, 1718-1720.
[7]  Arai, T., Nakaie, H., Kamimura, K., Nakamura, H., Ariizumi, S., Ashizawa, S. and Takamatsu, T. (2016) Selective Heating of Transition Metal Usings Hydrogen Plasma and Its Application to Formation of Nickel Silicide Electrodes for Silicon Ultralarge-Scale Integration Devices. Journal of Materials Science and Chemical Engineering, 4, 29.


comments powered by Disqus