All Title Author
Keywords Abstract


TEM and STEM Observations of a Flat Continuous Silicon-Germanium Thin Film Epitaxially Grown on Porous Silicon

DOI: 10.4236/msce.2017.51004, PP. 26-34

Keywords: Porous Silicon, Silicon Germanium, Strain Relaxation, Strained Silicon, Nanostructure, High-Mobility Semiconductors, Transmission Electron Microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Strain-relaxed SiGe is an attractive material for use as a substrate of strained Si, in which carrier mobility is higher than that of bulk Si. The concept of this study is the use of porous Si as a sponge like substrate so that a SiGe lattice can relax without introducing dislocations. We produced porous Si specimens by electrochemical anodization and annealed them under a H2 atmosphere. Then, SiGe thin films were grown by gas-source molecular beam epitaxy. We observed the microstructure of the specimens using transmission electron microscopy. The result showed that we succeeded in producing a single-crys- tal continuous Si0.73Ge0.27 film with a 10% relaxation ratio and a low dislocation density on porous Si.

References

[1]  Nakajima, K., Kusunoki, T., Azuma, Y., Usami, N., Fujiwara, K., Ujihara, T., Sazaki, G. and Shishido, T. (2002) J. Cryst. Growth, 240, 373-381. https://doi.org/10.1016/S0022-0248(02)00940-5
[2]  Azuma, Y., Usami, N., Ujihara, T., Fujiwara, K., Sazaki, G., Murakami, Y. and Nakajima, K. (2003) J. Cryst. Growth, 250, 298-304. https://doi.org/10.1016/S0022-0248(02)02400-4
[3]  Usami, N., Kitamura, M., Obara, K., Nose, Y., Shishido, T. and Nakajima, K. (2005) J. Cryst. Growth, 284, 57-64. https://doi.org/10.1016/j.jcrysgro.2005.06.060
[4]  Baribeau, J.M., Jackman, T.E., Houghton, D.C., Maigné, P. and Denhoff, M.W. (1988) J. Appl. Phys., 63, 5738-5746. https://doi.org/10.1063/1.340312
[5]  Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J. and Weir, B.E. (1991) Appl. Phys. Lett., 59, 811-813. https://doi.org/10.1063/1.105351
[6]  LeGoues, F.K., Meyerson, B.S., Morar, J.F. and Kirchner, P.D. (1992) J. Appl. Phys., 71, 4230-4243. https://doi.org/10.1063/1.350803
[7]  LeGoues, F.K. (1994) Phys. Rev. Lett., 72, 876-879. https://doi.org/10.1103/PhysRevLett.72.876
[8]  Mooney, P.M., Jordan-Sweet, J.L., Ismail, K., Chu, J.O., Feenstra, R.M. and Le-Goues, F.K. (1995) Appl. Phys. Lett., 67, 2373-2375. https://doi.org/10.1063/1.114349
[9]  Chen, H., Guo, L.W., Cui, Q., Hu, Q., Huang, Q. and Zhou, J.M. (1996) J. Appl. Phys., 79, 1167-1169. https://doi.org/10.1063/1.360899
[10]  Li, J.H., Peng, C.S., Wu, Y., Dai, D.Y., Zhou, J.M. and Mai, Z.H. (1997) Appl. Phys. Lett., 71, 3132-3134. https://doi.org/10.1063/1.120268
[11]  Ueno, T., Iri-sawa, T., Shiraki, Y., Uedono, A. and Tanigawa, S. (2000) Thin Solid Films, 369, 320-323. https://doi.org/10.1016/S0040-6090(00)00872-5
[12]  Trinkaus, H., Holländer, B., Rongen, St., Mantl, S., Herzog, H.-J., Kuchen-becker, J. and Hackbarth, T. (2000) Appl. Phys. Lett., 76, 3552-3554. https://doi.org/10.1063/1.126704
[13]  Luysberg, M., Kirch, D., Trinkaus, H., Holländer, B., Lenk, St., Mantl, S., Herzog, H.-J., Hackbarth, T. and Fichtner, P.F.P. (2002) J. Appl. Phys., 92, 4290-4295. https://doi.org/10.1063/1.1504496
[14]  Sawano, K., Hirose, Y., Ozawa, Y., Koh, S., Yamanaka, J., Nakagawa, K., Hattori. T. and Shiraki, Y. (2003) Jpn. J. Appl. Phys., 42, L735-737. https://doi.org/10.1143/JJAP.42.L735
[15]  Yamanaka, J., Sawano, K., Nakagawa, K., Suzuki, K., Ozawa, Y., Koh, S., Hattori, T. and Shiraki, Y. (2004) Mater. Trans., 45, 2644-2646. https://doi.org/10.2320/matertrans.45.2644
[16]  Sawano, K., Koh, S., Shiraki, Y., Ozawa, Y., Hattori, T., Yamanaka, J., Suzuki, K., Arimoto, K., Nakagawa, K. and Usami, N. (2004) Appl. Phys. Lett., 85, 2514-2516. https://doi.org/10.1063/1.1794353
[17]  Yamanaka, J., Sawano, K., Nakagawa, K., Suzuki, K., Ozawa, Y., Koh, S., Hattori, T. and Shiraki, Y. (2004) Mater. Sci. Semicond. Process, 7, 389-392. https://doi.org/10.1016/j.mssp.2004.09.008
[18]  Bauer, M., Oehme, M., Lyutovich, K. and Kasper, E. (1998) Thin Solid Films, 336, 104-108. https://doi.org/10.1016/S0040-6090(98)01274-7
[19]  Kasper, E., Lyutovich, K., Bauer, M. and Oehme, M. (1998) Thin Solid Films, 336, 319-322. https://doi.org/10.1016/S0040-6090(98)01317-0
[20]  Yamanaka, J., Sawano, K., Suzuki, K., Nakagawa, K., Ozawa, Y., Hattori, T. and Shiraki, Y. (2006) Thin Solid Films, 508, 103-106. https://doi.org/10.1016/j.tsf.2005.08.392
[21]  Luryi, S. and Suhir, E. (1986) Appl. Phys. Lett., 49, 140-142. https://doi.org/10.1063/1.97204
[22]  Xie, Y.H. and Bean, J.C. (1990) J. Vac. Sci. Technol., B8, 227-231. https://doi.org/10.1116/1.584815
[23]  Marty, O., Nychyporuk, T., de la Torre, J., Lysenko, V., Bremond, G. and Barbier, D. (2006) Appl. Phys. Lett., 88, 101909-1-101909-3. https://doi.org/10.1063/1.2179620
[24]  Usami, N., Kutsukake, K., Nakajima, K., Amtab-lian, S., Fave, A. and Lemiti, M. (2007) Appl. Phys. Lett., 90, 031915-1 -031915-3.
[25]  Fave, A., Quoizola, S., Kraiem, J., Kaminski, A., Lemiti, M. and Laugier, A. (2004) Thin Solid Films, 451-452, 308-311. https://doi.org/10.1016/j.tsf.2003.11.055
[26]  Ott, N., Nerding, M., Müller, G., Brendel, R. and Strunk, H.P. (2003) Phys. Status Solidi A, 197, 93-97. https://doi.org/10.1002/pssa.200306474

Full-Text

comments powered by Disqus