All Title Author
Keywords Abstract

DIMZAL: A Software Tool to Compute Acceptable Safety Distance

DOI: 10.4236/ojf.2017.71002, PP. 11-33

Keywords: Decision-Making Tool, Fire Model, Acceptable Safety Distance, ASD, Calculation Tool, DEVS, Mobile Application

Full-Text   Cite this paper   Add to My Lib


The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Safety Distance (ASD) between the fire and firefighters is required. This distance is usually set thanks to a general rule-of-thumb: it should be at least 4 times the maximum flame length. A common assumption considers an empirical relationship between fireline intensity and flame length. In the current work which follows on from an oral presentation held at the VII International Conference on Forest Fire Research in Coimbra in 2014, an alternative way is proposed: a closed physical model is applied in order to quantize the ASD. This model is integrated in a software tool, which uses a simulation framework based on Discrete EVent system Specification formalism (DEVS), a 3D physical real-time model of surface fires developed at the University of Corsica and a mobile application based on a Google SDK to display the results


[1]  Alexander, M. E., & Cruz, M. G. (2012). Interdependencies between Flame Length and Fireline Intensity in Predicting Crown Fire Initiation and Crown Scorch Height. International Journal of Wildland Fire, 21, 95-113.
[2]  Andrews, P. L., Heinsch, F. A., & Shelvan, L. (2011). How to Generate and Interpret Fire Characteristics Charts for Surface and Crown Fire Behavior.
[3]  Balbi, J.-H., Morandini, F., Silvani, X., Filippi, J. B., & Rinieri, F. (2009). A Physical Model for Wildland Fires. Combustion and Flame, 156, 2217-2230.
[4]  Balbi, J.-H., Rossi, J.-L., Marcelli, T., & Chatelon, F.-J. (2010). Physical Modeling of Surface Fire under Nonparallel Wind and Slope Conditions. Combustion Science and Technology, 182, 922-939.
[5]  Balbi, J.-H., Rossi, J.-L., Marcelli, T., & Santoni, P.-A. (2007). A 3D Physical Real-Time Model of Surface Fires Across Fuel Beds. Combustion Science and Technology, 179, 2511-2537.
[6]  Bisgambiglia, P.-A., Filippi, J. B., & Gentili, E. (2006). A Fuzzy Approach of Modeling Evolutionary Interfaces Systems. In IEEE (Ed.), 1st international Symposium on Environment Identities and Mediterranean Area (pp. 98-103). New York: IEEE.
[7]  Bisgambiglia, P.-A., Franceschini, R., Chatelon, F.-J., Rossi, J.-L., & Bisgambiglia, P. A. (2014). Mobile Application Based on a Physical Model to Calculate Acceptable Safety Distance. In D. X. Viegas (Ed.), 7th International Conference on Forest Fire Research (p. 167). Coimbra: Imprensa da Universidade de Coimbra.
[8]  Bisgambiglia, P.-A., Franceschini, R., Chatelon, F.-J., Rossi, J.-L., & Bisgambiglia, P. A. (2013). Discrete Event Formalism to Calculate Acceptable Safety Distance. In R. Pasupathy, S. H. Kim, A. Tolk, R. Hill, & M. E. Kuhl (Eds.), 2013 Winter Simulation Conference (WSC) (pp. 217-228). New York: IEEE.
[9]  Burrows, J. K. (1994). Experimental Development of a Fire Management Model for Jarrah (Eucalyptus marginata ex Sm) Forest. Canberra: Australian National University.
[10]  Butler, B., & Cohen, J. (1998). Firefighter Safety Zones: A Theoretical Model Based on Radiative Heating. International Journal of Wildland Fire, 8, 73-77.
[11]  Butler, B. W. (2014). Wildland Firefighter Safety Zones: A Review of Past Science and Summary of Future Needs. International Journal of Wildland Fire, 23, 295-308.
[12]  Butler, B. W., Finney, M., Andrews, P. L., & Albini, F. (2004). A radiation-Driven Model for Crown Fire Spread. Canadian Journal of Forest Research, 34, 1588-1599.
[13]  Byram, G. M. (1959). Combustion of Forest Fuels. In K. P. Davis (Ed.), Forest Fire: Control and Use (pp. 61-89). New York: McGraw-Hill.
[14]  Catchpole, B. R. A., Choate, J., Fogarty. L. G., Gellie, N., McCarthy, G. J., McCaw, W. R., Marsden-Smedley, J. B., & Pearce, G. W. L. (1998). Co-Operative Development of Equations for Heathland Fire Behaviour. 3rd International Conference on Forest Fire Research and 14th Fire and Forest Meteorology Conference, 1, 631-645.
[15]  Chetehouna, K., Séro-Guillaume, O., Sochet, I., & Degiovanni, A. (2008). On the Experimental Determination of Flame Front Positions and of Propagation Parameters for a Fire. International Journal of Thermal Sciences, 47, 1148-1157.
[16]  Clark, R. G. (1983). Threshold Requirements for Fire Spread in Grassland Fuels. Lubbock, TX: Texas Tech University.
[17]  Eisenberg, N. A., Lynch, C. J., & Breeding, R. J. (1979). Vulnerability Model: A Simulation System for Assessing Damage Resulting from Marine Spills. Report No. CG-D-38-79, Washington DC.
[18]  Fernandes, P. M., Botelho, H. S., Rego, F. C., & Loureiro, C. (2009). Empirical Modelling of Surface Fire Behaviour in Maritime Pine Stands. International Journal of Wildland Fire, 18, 698-710.
[19]  Fernandes, P. M., Catchpole, W. R., & Rego, F. C. (2000). Shrubland Fire Behaviour Modelling with Microplot Data. Canadian Journal of Forest Research-Revue, 30, 889-899.
[20]  Franceschini, R., & Bisgambiglia, P.-A. (2014). Decentralized Approach for Efficient Simulation of Devs Models. In B. Grabot, B. Vallespir, S. Gomes, A. Bouras, & D. Kiristsis (Eds.), IFIP International Conference on Advances in Production Management Systems (pp. 336-343). Berlin: Springer.
[21]  Franceschini, R., Bisgambiglia, P. A., Bisgambiglia, P. A., & Hill, D. R. C. (2014). DEVS-Ruby: A Domain Specific Language for DEVS Modeling and Simulation (WIP). In IEEE Computer Society, Proceedings of the Symposium on Theory of Modeling & Simulation (pp. 393-398). Tampa:IEEE.
[22]  Green, L. R., & Schimke, H. E. (1971). Guides for Fuel-Breaks in Sierra Nevada Mixed-Conifer Type.
[23]  Harzallah, Y., Michel, V., Liu, Q., & Wainer, G. (2008). Distributed Simulation and Web Map Mash-Up for Forest Fire Spread. In IEEE Computer Society, Proceedings of the 2008 IEEE Congress on Services (pp. 176-183). New York: IEEE.
[24]  Higgins, S. I., Bond, W. J., Trollope, W. S. W., & Williams, R. J. (2008). Physically Motivated Empirical Models for the Spread and Intensity of Grass Fires. International Journal of Wildland Fire, 17, 595-601.
[25]  JAI (2009). Camera Jai AD-o8oGE.
[26]  Kim, K. H., & Kang, W. S. (2005). A Web Services-Based Distributed Simulation Architecture for Hierarchical DEVS Models. In T. G. Kim (Ed.), 13th International Conference on AI, Simulation, Planning in High Autonomy Systems (pp. 370-379). Berlin: Springer.
[27]  Marcelli, T., Balbi, J.-H., Moretti, B., Rossi, J.-L., & Chatelon, F.-J. (2011). Flame Height Model of a Spreading Surface Fire. In MCS7, 7th Mediterranean Combustion Symposium (pp. 11-15). Cagliari: Combustion Institute.
[28]  Mittal, S., Risco, J. L., & Zeigler, B. P. (2007). DEVS-Based Simulation Web Services for Net-Centric T&E. 2007 Summer Simulation Multiconference, 1, 357-366.
[29]  Morandini, F., Silvani, X., Rossi, L., Santoni, P. A., Simeoni, A., Balbi, J. H., Louis Rossi, J., & Marcelli, T. (2006). Fire Spread Experiment across Mediterranean Shrub: Influence of Wind on Flame Front Properties. Fire Safety Journal, 41, 229-235.
[30]  Morvan, D., Tauleigne, V., & Dupuy, J.-L. (2002). Flame Geometry and Surface to Crown Fire Transition during the Propagation of a Line Fire through a Mediterranean Shrub. In D. X. Viegas (Ed.), 4th International Conference on Forest Fire Research (10 p). Rotterdam: Mill Press.
[31]  Muzy, A., Innocenti, E., Aiello, A., Santucci, J.-F., & Wainer, G. (2002). Cell-DEVS Quantization Techniques in a Fire Spreading Application. 2002 Winter Simulation Conference, 1, 542-549.
[32]  Nader, B., Filippi, J.-B., & Bisgambiglia, P.-A. (2011). An Experimental Frame for the Simulation of Forest Fire Spread. In IEEE Computer Society, 2011 Winter Simulation Conference (pp. 1010-1022). New York: IEEE.
[33]  Nelson Jr., R. M. (1980). Flame Characteristics for Fires in Southern Fuels. USDA Forest Service, General Research Paper SE-205, Asheville, NC: Southeast Forest Experimental Station.
[34]  Nelson Jr., R. M., & Adkins, C W. (1986). Flame Characteristics of Wind-Driven Surface Fires. Canadian Journal of Forest Research, 16, 1293-1300.
[35]  Proterina, C. (2013). PO Italia-Francia “Maritimo” Rapport PR3.3.3.
[36]  Raj, P. K. (2008). A Review of the Criteria for People Exposure to Radiant Heat Flux from Fires. Journal of Hazardous Materials, 159, 61-71.
[37]  Rossi, J. L., Simeoni, A., Moretti, B., & Leroy-Cancellieri, V. (2011). An Analytical Model Based on Radiative Heating for the Determination of Safety Distances for Wildland Fires. Fire Safety Journal, 46, 520-527.
[38]  Rossi, L., Molinier, T., Akhloufi, M., Pieri, A., & Tison, Y. (2013). Advanced Stereovision System for Fire Spreading Study. Fire Safety Journal, 60, 64-72
[39]  Rossi, L., Toulouse, T., Cancellieri, D., Rossi, J.-L., Morandini, F., & Akhloufi, M. (2014). Utilisation de la stéréovision visible et proche infrarouge pour la mesure de données expérimentales dans le cadre d’une recherché pluridisciplinaire sur les feux de forêt. Journal National de la Recherche en IUT, 33-44
[40]  Santoni, P. A., Simeoni, A., Rossi, J. L., Bosseur, F., Morandini, F., Silvani, X., Balbi, J. H., Cancellieri, D., & Rossi, L. (2006). Instrumentation of Wildland Fire: Characterisation of a Fire Spreading through a Mediterranean Shrub. Fire Safety Journal, 41, 171-184.
[41]  Seo, C., & Ziegler, B. P. (2012). Simulation Model Standardization through Web Services: Interoperation and Federation on the DEVS/SOA Platform. In IEEE Computer Society, Proceedings of the 2012 Symposium on Theory of Modeling and Simulation (pp. 46.1-46.8). Orlando: IEEE.
[42]  Van Wilgen, B. W., Le Maitre, D. C., & Kruger, F. J. (1985). Fire Behaviour in South African Fynbos (Macchia) Vegetation and Predictions from Rothermel’s Fire Model. Journal of Applied Ecology, 22, 207-216.
[43]  Vega, J. A., Cuinas, P., Fonturbel, T., Perez-Gorostiaga, P., & Fernandez, C. (1998). Predicting Fire Behavior in Galician (NW Spain) Shrubland Fuel Complexes. Proceedings of 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, 2, 713-728.
[44]  Zacharewicz, G., Hamri, M. E.-A., Frydman, C. S., & Giambiasi, N. (2010). A Generalized Discrete Event System (G-DEVS) Flattened Simulation Structure: Application to High-Level Architecture (HLA) Compliant Simulation of Workflow. Simulation, 86, 181-197.
[45]  Zárate, L., Arnaldos, J., & Casal, J. (2008). Establishing Safety Distances for Wildland Fires. Fire Safety Journal, 43, 565-575.
[46]  Ziegler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation. New York: Academic Press.


comments powered by Disqus