All Title Author
Keywords Abstract


基于LASSO-SVM模型的银行定期存款电话营销预测
Telephone Marketing Forecast of Bank Time Deposits Based on the LASSO-SVM Model

DOI: 10.12677/SA.2016.53029, PP. 289-298

Keywords: 定期存款,电话营销,支持向量机,LASSO-支持向量机
Time Deposits
, Telephone Marketing, Support Vector Machine, LASSO-SVM

Full-Text   Cite this paper   Add to My Lib

Abstract:

定期存款一直以来都是银行的主要资金来源,而电话营销也成为一种低成本,广受银行欢迎的营销模式。因此,如何提高电话营销成功率成为银行急需解决的重要问题。其中,影响客户订购定期存款的因素复杂多样,而这些因素之间可能存在多重共线性,如果银行不加选择地引入众多影响因素来进行订购定期存款的预测,往往不能取得良好的预测效果,甚至产生错误的决策。在统计学习方法中,LASSO方法可以同时进行参数估计和变量选择,所以本文提出了基于LASSO与支持向量机的组合预测方法。同时,与SVM、神经网络、LASSO-神经网络方法的预测效果进行比较,验证了LASSO-支持向量机组合预测方法的拟合预测效果要优于另外三种预测方法。
Time deposits have always been the main source of funds for the bank, and the telephone mar-keting has become a low-cost marketing model, which is widely popular with the bank. Therefore, how to improve the success rate of telemarketing has become an important problem to solve. Among them, the factors that affect customers ordering deposits are complicated, which may have multicollinearity. If banks indiscriminately use many influence factors to predict deposits, they often cannot obtain good prediction effects, and even make the wrong decision. In the statistical learning methods, the LASSO method can be used to estimate parameters and select variables, so this paper presents a combination forecast method based on the LASSO and Support Vector Ma-chine (SVM). At the same time, compared with SVM, neural network, LASSO-neural network me-thods, we find that the effect of LASSO-SVM forecasting method is better than the other three kinds of forecasting methods.?

References

[1]  胡援成. 货币银行学[M]. 北京: 中国财政经济出版社, 2011: 177-180.
[2]  姚颖. Z银行信用卡客户的电话营销策略研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2013: 1-2.
[3]  喻胜华, 龚尚花. 基于LASSO和支持向量机的粮食价格预测[J]. 湖南大学学报(社会科学版), 2016, 30(1): 71-75.
[4]  蒋士正, 许榕, 陈启美. 基于变量选择-神经网络模型的复杂路网短时交通流预测[J]. 上海交通大学学报, 2015, 49(2): 281-286.
[5]  方匡南, 章贵军, 张惠颖. 基于LASSO-Logistic模型的个人信用风险预警方法[J]. 数量经济技术经济研究, 2014(2): 125-136.
[6]  佚名. 支持向量机基本原理[DB/OL]. http://blog.csdn.net/lanbing510/article/details/7360493, 2012-03-16.
[7]  佚文. SVM直观原理, 以及LIBSVM的应用[DB/OL]. http://www.cnblogs.com/25-to-life/archive/2011/11/12/2246430.html
[8]  佚文. 支持向量机(SVM)是什么意思?[DB/OL]. http://www.zhihu.com/question/21094489
[9]  黄文, 王正林. 数据挖掘-R语言实战[M]. 北京: 电子工业出版社, 2014: 211-252.
[10]  吴晓萍, 赵学靖, 乔辉, 刘东梅, 王志. 基于LASSO-SVM的软件缺陷预测模型研究[J]. 计算机应用研究, 2013, 30(9): 2748-2754.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal