All Title Author
Keywords Abstract


菁染料及其功能化的纳米材料在生物分析和近红外荧光成像方面的应用研究进展
Research Progress in Cyanine Dyes and Their Functionalized Nanocomposites Used for Bioanalysis and Near-Infrared Molecular Fluorescent Imaging

DOI: 10.12677/AAC.2016.64017, PP. 109-115

Keywords: 菁染料,生物分析,近红外成像,生物纳米复合材料,荧光
Cyanine
, Bioanalysis, Near Infrared Image, Bio-Nanocomposite, Fluorescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

菁染料(Cy)在近红外区域有较强的荧光发射且易于修饰,因而近年来被广泛地应用于敏化生物分子、细胞和组织等物质,形成荧光标记的复合体,从而为生物分析、生物成像和疾病(特别是肿瘤)的机理分析和治疗提供了一条非常便利的途径。本文总结了近年来几种常见的菁染料(Cy3, Cy5, Cy7, Cy3.5和Cy5.5)及其与无机纳米粒子形成的纳米荧光标记物在生物分析和近红外成像方面所取得的最新成果。
Cyanine (Cy) compounds can produce strong fluorescent emission in the near infrared region after radiation and be easily modified with various substituents, thus they have been recently widely used as fluorescent probes to bind with bio-molecules, cells and tissues. The as-prepared lumi-nescent materials have provided a facile route for the bioanalysis, molecular fluorescent imaging and clinicopathologic analysis, especially for the tumour diagnosis and treatment. In this work, we reviewed the latest achievement of applications of several well-known cyanine derivatives such as Cy3, Cy5, Cy7, Cy3.5, Cy5.5, and their bio-nanocomposites produced with inorganic nanoparticles as luminescent probes in the fields of bioanalysis and near infrared molecular imaging.

References

[1]  Porcu, E.P., Salis, A., Gavini, E., Rassu, G., Maestri, M. and Giunchedi, P. (2016) Indocyanine Green Delivery Systems for Tumour Detection and Treatments. Biotechnology Advances, 34, 768-789.
http://dx.doi.org/10.1016/j.biotechadv.2016.04.001
[2]  刘艳霞, 张象涵, 王兰英, 等. 菁染料在生物医学中的应用进展[J]. 化学试剂, 2010, 32(1): 37-42.
[3]  高志宇, 刘燕刚, 陈妍. 生物荧光标记菁染料的研究进展[J]. 影像技术, 2001(2): 10-16.
[4]  蒋林玲, 李宝林. 菁染料的应用研究进展[J]. 安徽农业科学, 2009, 37(15): 6829-6831.
[5]  杨大伟, 于东升, 王雪岭, 等. 人血清蛋白和菁染料的相互作用研究[J]. 广州化工, 2015(19): 58-60.
[6]  Luo, S., Tan, X., Fang, S., et al. (2016) Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer Phototherapy. Advanced Functional Materials, 26, 2826-2835.
http://dx.doi.org/10.1002/adfm.201600159
[7]  张秀富, 付义乐, 左治钧, 等. 水溶性吲哚菁染料的合成、光谱性质及其与DNA和BSA的作用[J]. 有机化学, 2013, 33(8): 1709-1714.
[8]  王丽秋, 彭孝军. 生物标记用3H-吲哚菁染料[J]. 染料工业, 2002, 39(4): 8-12.
[9]  佟玲, 温俊峰, 李锦, 等. 生物荧光分析试剂Cy系列的应用及合成[J]. 分析实验室, 2003, 22(S1): 275-277.
[10]  张志颖, 刘春艳. 反胶束微环境对菁染料光谱性质的影响[J]. 光谱学与光谱分析, 2001, 21(2): 247-250.
[11]  Wang, L., Xiang, J., Sun, H., et al. (2015) Controllable Cy3-MTC-Dye Aggregates and Its Applications Served as Achemosensor. Dyes and Pigments, 122, 382-386.
http://dx.doi.org/10.1016/j.dyepig.2015.07.018
[12]  Stennett, E.M.S., Ciuba, M.A. and Levitus, M. (2014) Pho-tophysical Processes in Single Molecule Organic Fluorescent Probes. Chemical Society Reviews, 43, 1057-1075.
http://dx.doi.org/10.1039/C3CS60211G
[13]  邓洪杰, 张存林, 章鹤龄, 等. 一种CTP用红外吸收菁染料的合成[J]. 首都师范大学学报, 2006, 27(3): 34-36.
[14]  王晓驰, 常刚, 曹瑞军, 等. 近红外荧光染料的结构、性质及生物荧光成像应用[J]. 化学进展, 2015(7): 794-805.
[15]  张娜娜, 郭丽, 罗圣霖, 等. 新型近红外吲哚七甲川菁染料的合成与荧光成像的特性[J]. 华西药学杂志, 2012, 27(4): 349-352.
[16]  Li, Y., Sun, Y., Li, J., et al. (2005) Ultrasensitive Near-Infrared Fluorescence-Enhanced Probe for in Vivo Nitroreductase Imaging. Journal of the American Chemical Society, 137, 6407-6416.
http://dx.doi.org/10.1021/jacs.5b04097
[17]  Gruber, H.J., Hahn, C.D., Kada, C., et al. (2000) Anomalous Fluorescence Enhancement of Cy3 and Cy3.5 versus Anomalous Fluorescence Loss of Cy5 and Cy7 upon Covalent Linking to IgG and Noncovalent Binding to Avidin. Bioconjugate Chemistry, 11, 696-704.
http://dx.doi.org/10.1021/bc000015m
[18]  Kang, H.W., Weissleder, R. and Bogdanov, A. (2002) Targeting of MPEG-Protected Polyamino Acid Carrier to Human E-Selection in Vitro. Amino Acids, 23, 301-308.
http://dx.doi.org/10.1007/s00726-001-0142-2
[19]  Christin, P., Kai, L., Detlef, S.F., et al. (2005) Comparison of Two Tricarbocyanine-Based Dyes for Fluorescence Optical Imaging. Journal of Fluorescence, 15, 443-454.
[20]  Chen, Y., Pullambhatla, M., Banerjee, S.R., et al. (2012) Synthesis and Biological Evaluation of Low Molecular Weight Fluorescent Imaging Agents for the Prostate-Specific Membrane Antigen. Bioconjugate Chemistry, 23, 2377-2385.
http://dx.doi.org/10.1021/bc3003919
[21]  Jenkins, R., Burdette, M.K. and Foulger, S.H. (2016) Mini-Review: Fluorescence Imaging in Cancer Cells Using Dye-Doped Nanoparticles. RSC Advances, 6, 65459-65474.
http://dx.doi.org/10.1039/C6RA10473H
[22]  Ayala-Orozco, C., Liu, J.G., Knight, M.W., et al. (2014) Fluores-cence Enhancement of Molecules inside a Goldnanomatryoshka. Nano Letters, 14, 2926-2933.
http://dx.doi.org/10.1021/nl501027j
[23]  Kircher, M.F., Weissleder, R. and Josephson, L. (2004) A Dual Fluoro-chromeprobe for Imaging Proteases. Bioconjugate Chemistry, 15, 242-248.
http://dx.doi.org/10.1021/bc034151d
[24]  Gianella, A., Jarzyna, P.A., Mani, V., et al. (2011) Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer. ACS Nano, 5, 4422-4433.
http://dx.doi.org/10.1021/nn103336a
[25]  Lee, C.H., Cheng, S.H., Wang, Y.J., et al. (2009) Near-Infrared Meso-porous Silica Nanoparticles for Optical Imaging: Characterization and in Vivo Biodistribution. Advanced Functional Materials, 19, 215-222.
http://dx.doi.org/10.1002/adfm.200800753
[26]  Liu, Y., Xu, M., Chen, Q., et al. (2015) Gold Nano-rods/Mesoporous Silica-Based Nanocomposite as Theranostic Agents for Targeting Near-Infrared Imaging and Photo-thermal Therapy Induced with Laser. International Journal of Nanomedicine, 10, 4747-4761.
http://dx.doi.org/10.2147/IJN.S82940
[27]  Zou, P., Xu, S., Povoski, S.P., et al. (2009) Near-Infrared Fluorescence Labeled Anti-TAG-72 Monoclonal Antibodies for Tumor Imaging in Colorectal Cancer Xenograft Mice. Molecular Pharmacology, 6, 428-440.
http://dx.doi.org/10.1021/mp9000052
[28]  Yamane, T., Hanaoka, K., Muramatsu, Y., et al. (2011) Method for Enhancing Cell Penetration of Gd3+-Based MRI Contrast Agents by Conjugation with Hydrophobic Fluorescent Dyes. Bioconjugate Chemistry, 22, 2227-2236.
http://dx.doi.org/10.1021/bc200127t
[29]  Li, B.H., Zhang, Y.L., Li, F.S., et al. (2016) A Novel Sensor for the Detection of Alkaline Phosphatase Activity Based on the Self-Assembly of Eu3+-Doped Oxide Nanoparticles and Hep-tamethine Cyanine Dye. Sensors and Actuators B, Chem., 233, 479-485.
http://dx.doi.org/10.1016/j.snb.2016.04.102
[30]  Jin, Y., Ma, X., Feng, S., et al. (2015) Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics. Bioconjugate Chemistry, 26, 2530-2541.
http://dx.doi.org/10.1021/acs.bioconjchem.5b00551
[31]  Yang, Z., Zheng, S., Harrison, W.J., et al. (2007) Long-Circulating Near-Infrared Fluorescence Core-Cross-Linked Polymeric Micelles: Synthesis, Characterization, and Dual Nuclear/Optical Imaging. Biomacromolecules, 8, 3422- 3428.
http://dx.doi.org/10.1021/bm7005399
[32]  Mieszawska, A.J., Kim, Y.T., Gianella, A., et al. (2013) Synthesis of Polymer-Lipid Nanoparticles for Image-Guided Delivery of Dual Modality Therapy. Bioconjugate Chemistry, 24, 1429-1434.
http://dx.doi.org/10.1021/bc400166j

Full-Text

comments powered by Disqus