|
运动与线粒体动力学研究综述
|
Abstract:
[1] | Dorn 2nd, G.W. and Kitsis, R.N. (2015) The Mitochondrial Dynamism-Mitophagy-Cell Death Interactome: Multiple Roles Performed by Members of a Mitochondrial Molecular Ensemble. Circulation Research, 116, 167-182.
http://dx.doi.org/10.1161/CIRCRESAHA.116.303554 |
[2] | Suliman, H.B. and Piantadosi, C.A. (2016) Mitochondrial Quality Control as a Therapeutic Target. Pharmacological Reviews, 68, 20-48. http://dx.doi.org/10.1124/pr.115.011502 |
[3] | Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. |
[4] | Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287. http://dx.doi.org/10.1146/annurev-genet-110410-132529 |
[5] | Iqbal, S. and Hood, D.A. (2015) The Role of Mitochondrial Fusion and Fission in Skeletal Muscle Function and Dysfunction. Frontiers in Bioscience (Landmark Ed), 20, 157-172. http://dx.doi.org/10.2741/4303 |
[6] | Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E. and Chan, D.C. (2003) Mitofusins Mfn1 and Mfn2 Coordinately Regulate Mitochondrial Fusion and Are Essential for Embryonic Development. The Journal of Cell Biology, 160, 189-200. http://dx.doi.org/10.1083/jcb.200211046 |
[7] | Cai, Q. and Tammineni, P. (2016) Alterations in Mitochondrial Quality Control in Alzheimer’s Disease. Frontiers in Cellular Neuroscience, 10, 24. http://dx.doi.org/10.3389/fncel.2016.00024 |
[8] | Held, N.M. and Houtkooper, R.H. (2015) Mitochondrial Quality Control Pathways as Determinants of Metabolic Health. BioEssays, 37, 867-876. http://dx.doi.org/10.1002/bies.201500013 |
[9] | Frohman, M.A. (2015) Role of Mitochondrial Lipids in Guiding Fission and Fusion. Journal of Molecular Medicine (Berl), 93, 263-269. http://dx.doi.org/10.1007/s00109-014-1237-z |
[10] | Chen, Y., Liu, Y. and Dorn 2nd, G.W. (2011) Mitochondrial Fusion Is Essential for Organelle Function and Cardiac Homeostasis. Circulation Research, 109, 1327-1331. http://dx.doi.org/10.1161/CIRCRESAHA.111.258723 |
[11] | Papanicolaou, K.N., Kikuchi, R., Ngoh, G.A., et al. (2012) Mitofusins 1 and 2 Are Essential for Postnatal Metabolic Remodeling in Heart. Circulation Research, 111, 1012-1026. http://dx.doi.org/10.1161/CIRCRESAHA.112.274142 |
[12] | Gomes, L.C., Di, B.G. and Scorrano, L. (2011) During Autophagy Mitochondria Elongate, Are Spared from Degradation and Sustain cell Viability. Nature Cell Biology, 13, 589-598. http://dx.doi.org/10.1038/ncb2220 |
[13] | Bhandari, P., Song, M., Chen, Y., Burelle, Y. and Dorn 2nd, G.W. (2014) Mitochondrial Contagion Induced by Parkin Deficiency in Drosophila Hearts and Its Containment by Suppressing Mitofusin. Circulation Research, 114, 257-265.
http://dx.doi.org/10.1161/CIRCRESAHA.114.302734 |
[14] | Smirnova, E., Griparic, L., Shurland, D.L. and van der Bliek, A.M. (2001) Dynamin-Related Protein Drp1 Is Required for Mitochondrial Division in Mammalian Cells. Molecular Biology of the Cell, 12, 2245-2256.
http://dx.doi.org/10.1091/mbc.12.8.2245 |
[15] | Twig, G., Elorza, A., Molina, A.J., et al. (2008) Fission and Selective Fusion Govern Mitochondrial Segregation and Elimination by Autophagy. The EMBO Journal, 27, 433-446. http://dx.doi.org/10.1038/sj.emboj.7601963 |
[16] | Ong, S.B., Subrayan, S., Lim, S.Y., Yellon, D.M., Davidson, S.M. and Hausenloy, D.J. (2010) Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 121, 2012-2022.
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.906610 |
[17] | Cobley, J.N., Moult, P.R., Burniston, J.G., Morton, J.P. and Close, G.L. (2015) Exercise Improves Mitochondrial and Redox-Regulated Stress Responses in the Elderly: Better Late than Never. Biogerontology, 16, 249-264.
http://dx.doi.org/10.1007/s10522-014-9546-8 |
[18] | Drake, J.C., Wilson, R.J. and Yan, Z. (2016) Molecular Mechanisms for Mitochondrial Adaptation to Exercise Training in Skeletal Muscle. The FASEB Journal, 30, 13-22. http://dx.doi.org/10.1096/fj.15-276337 |
[19] | Yan, Z., Lira, V.A. and Greene, N.P. (2012) Exercise Training-Induced Regulation of Mitochondrial Quality. Exercise and Sport Sciences Reviews, 40, 159-164. |
[20] | Perry, C.G., Lally, J., Holloway, G.P., Heigenhauser, G.J., Bonen, A. and Spriet, L.L. (2010) Repeated Transient mRNA Bursts Precede Increases in Transcriptional and Mitochondrial Proteins during Training in Human Skeletal Muscle. The Journal of Physiology, 588, 4795-4810. http://dx.doi.org/10.1113/jphysiol.2010.199448 |
[21] | Ding, H., Jiang, N., Liu, H., et al. (2010) Response of Mitochondrial Fusion and Fission Protein Gene Expression to Exercise in Rat Skeletal Muscle. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800, 250-256.
http://dx.doi.org/10.1016/j.bbagen.2009.08.007 |
[22] | Cartoni, R., Leger, B., Hock, M.B., et al. (2005) Mitofusins 1/2 and ERRα Expression Are Increased in Human Skeletal Muscle after Physical Exercise. The Journal of Physiology, 567, 349-358.
http://dx.doi.org/10.1113/jphysiol.2005.092031 |
[23] | 刘慧君, 姜宁, 赵斐, 等. 急性运动中骨骼肌线粒体移动相关基因表达与线粒体动力学的关系[J]. 天津体育学院学报, 2010, 25(2): 118-121. |
[24] | 马国栋, 刘艳环. 耐力训练对急性酒精性肝损伤大鼠线粒体融合与分裂的影响[J]. 北京体育大学学报, 2013(11): 70-74. |
[25] | Goncalves, I.O., Passos, E., Diogo, C.V., et al. (2016) Exercise Mitigates Mitochondrial Permeability Transition Pore and Quality Control Mechanisms Alterations in Nonalcoholic Steatohepatitis. Applied Physiology, Nutrition, and Metabolism, 41, 298-306. http://dx.doi.org/10.1139/apnm-2015-0470 |
[26] | Greene, N.P., Lee, D.E., Brown, J.L., et al. (2015) Mitochondrial Quality Control, Promoted by PGC-1α, Is Dysregulated by Western Diet-Induced Obesity and Partially Restored by Moderate Physical Activity in Mice. Physiological Reports, 3, pii: e12470. |
[27] | Garnier, A., Fortin, D., Zoll, J., et al. (2005) Coordinated Changes in Mitochondrial Function and Biogenesis in Healthy and Diseased Human Skeletal Muscle. The FASEB Journal, 19, 43-52.
http://dx.doi.org/10.1096/fj.04-2173com |
[28] | Liu, L., Sakakibara, K., Chen, Q. and Okamoto, K. (2014) Recep-tor-Mediated Mitophagy in Yeast and Mammalian Systems. Cell Research, 24, 787-795. http://dx.doi.org/10.1038/cr.2014.75 |
[29] | Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P. and Youle, R.J. (2010) Mitochondrial Membrane Potential Regulates PINK1 Import and Proteolytic Destabilization by PARL. The Journal of Cell Biology, 191, 933-942.
http://dx.doi.org/10.1083/jcb.201008084 |
[30] | Jin, S.M. and Youle, R.J. (2013) The Accumulation of Misfolded Proteins in the Mitochondrial Matrix Is Sensed by PINK1 to Induce PARK2/Parkin-Mediated Mitophagy of Polarized Mitochondria. Autophagy, 9, 1750-1757.
http://dx.doi.org/10.4161/auto.26122 |
[31] | Wang, X., Winter, D., Ashrafi, G., et al. (2011) PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell, 147, 893-906. http://dx.doi.org/10.1016/j.cell.2011.10.018 |
[32] | Kim, Y., Park, J., Kim, S., et al. (2008) PINK1 Controls Mitochondrial Localization of Parkin through Direct Phosphorylation. Biochemical and Biophysical Research Communications, 377, 975-980.
http://dx.doi.org/10.1016/j.bbrc.2008.10.104 |
[33] | Chen, Y. and Dorn 2nd, G.W. (2013) PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science, 340, 471-475. |
[34] | Novak, I., Kirkin, V., McEwan, D.G., et al. (2010) Nix Is a Selective Autophagy Receptor for Mitochondrial Clearance. EMBO Reports, 11, 45-51. http://dx.doi.org/10.1038/embor.2009.256 |
[35] | Lee, Y., Lee, H.Y., Hanna, R.A. and Gustafsson, A.B. (2011) Mitochondrial Autophagy by Bnip3 Involves Drp1-Me- diated Mitochondrial Fission and Recruitment of Parkin in Cardiac Myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 301, H1924-H1931. http://dx.doi.org/10.1152/ajpheart.00368.2011 |
[36] | Liu, L., Feng, D., Chen, G., et al. (2012) Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells. Nature Cell Biology, 14, 177-185. http://dx.doi.org/10.1038/ncb2422 |
[37] | Chen, G., Han, Z., Feng, D., et al. (2014) A Regulatory Signaling Loop Comprising the PGAM5 Phosphatase and CK2 Controls Receptor-Mediated Mitophagy. Molecular Cell, 54, 362-377. http://dx.doi.org/10.1016/j.molcel.2014.02.034 |
[38] | Wu, H., Xue, D., Chen, G., et al. (2014) The BCL2L1 and PGAM5 Axis Defines Hypoxia-Induced Receptor-Mediated Mitophagy. Autophagy, 10, 1712-1725. http://dx.doi.org/10.4161/auto.29568 |
[39] | Gong, G., Hu, L., Liu, Y., et al. (2014) Upregulation of HIF-1α Protein Induces Mitochondrial Autophagy in Primary Cortical Cell Cultures through the Inhibition of the mTOR Pathway. International Journal of Molecular Medicine, 34, 1133-1140. |
[40] | Ishihara, M., Urushido, M., Hamada, K., et al. (2013) Sestrin-2 and BNIP3 Regulate Autophagy and Mitophagy in Renal Tubular Cells in Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 305, F495-F509.
http://dx.doi.org/10.1152/ajprenal.00642.2012 |
[41] | Di, S.G., Pestell, T.G., Casimiro, M.C., et al. (2015) Loss of Sirt1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy, and Delays Park2 Translocation to Mitochondria. The American Journal of Pathology Home, 185, 266-279. http://dx.doi.org/10.1016/j.ajpath.2014.09.014 |
[42] | Jang, S.Y., Kang, H.T. and Hwang, E.S. (2012) Nicotinamide-Induced Mitophagy: Event Mediated by High NAD+/ NADH Ratio and SIRT1 Protein Activation. The Journal of Biological Chemistry, 287, 19304-19314.
http://dx.doi.org/10.1074/jbc.M112.363747 |
[43] | Hariharan, N., Maejima, Y., Nakae, J., Paik, J., DePinho, R.A. and Sadoshima, J. (2010) Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circulation Research, 107, 1470-1482. http://dx.doi.org/10.1161/CIRCRESAHA.110.227371 |
[44] | Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1- Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055.
http://dx.doi.org/10.1172/JCI41376 |
[45] | He, C., Bassik, M.C., Moresi, V., et al. (2012) Exercise-Induced BCL2-Regulated Autophagy Is Required for Muscle Glucose Homeostasis. Nature, 481, 511-515. http://dx.doi.org/10.1038/nature10758 |
[46] | Garber, K. (2012) Autophagy. Explaining Exercise. Science, 335, 281. |
[47] | Ma, G.D., Liu, Y.H., Zhang, Q.L., et al. (2014) Pre-Endurance Training Prevents Acute Alcoholic Liver Injury in Rats through the Regulation of Damaged Mitochondria Accumulation and Mitophagy Balance. Hepatology International, 8, 425-435. http://dx.doi.org/10.1007/s12072-014-9529-5 |
[48] | Kim, Y.A., Kim, Y.S., Oh, S.L., Kim, H.J. and Song, W. (2013) Autophagic Response to Exercise Training in Skeletal Muscle with Age. Journal of Physiology and Biochemistry, 69, 697-705. http://dx.doi.org/10.1007/s13105-013-0246-7 |
[49] | 薄海, 李玲, 段富强, 朱江. 低氧联合运动对大鼠骨骼肌线粒体自噬的影响[J]. 中国康复医学杂志, 2014, 29(10): 908-912. |
[50] | 崔迪, 贺杰, 孙婧瑜, 丁树哲. 耐力训练与p53抑制剂pft-α对小鼠骨骼肌线粒体自噬相关基因表达的影响[J]. 天津体育学院学报, 2013, 28(5): 422-426. |