全部 标题 作者
关键词 摘要


Enzymes of Earthworm as Indicators of Pesticide Pollution in Soil

DOI: 10.4236/aer.2016.44011, PP. 113-124

Keywords: Earthworms, Pesticides, Biomarkers, Enzymes, Oxidative Stress, Neurotransmission System

Full-Text   Cite this paper   Add to My Lib

Abstract:

The importance of the earthworms in the agricultural practices is well known. The increasing applications of pesticides and chemicals in the agricultural farms have adversely influenced the flora and fauna of the soil. Earthworms which immensely contribute in increasing the quality and fertility of agricultural soil are reported be worst hit organisms under such conditions. Recent reports have indicated growing interests among researchers to explore biochemical and molecular markers as indicators of accumulation of pollutants in the soil in general and pesticides in particular. The varying levels of several biomolecules in different parts of the earthworm have been reported which are indicative of sensitivity of the organisms to different xenobiotics. However, the existing information lacks the literature displaying stock of information regarding the impact of pesticides on the levels of some key enzymes regulating many crucial functions in the earthworm at one place. Keeping in view this issue, it was envisaged to bring out a mini review which illustrates updated information available on the impact of pesticides on the activities of certain key enzymes reported to be responsible for catalysing metabolic pathways concerning the neurotransmission system, energy metabolism, oxidative stress and amino acids metabolism in different body parts of the earthworms, a prospective bioindicators of pesticides contamination in the soil.

References

[1]  Fonte, S. J., Winsome, T. and Six, J. (2009) Earthworm Populations in Relation to Soil Organic Matter Dynamics and Management in California Tomato Cropping Systems. Applied Soil Ecology, 41, 206-214.
http://dx.doi.org/10.1016/j.apsoil.2008.10.010
[2]  Luo, Y., Zang, Y., Zhong, Y. and Kong, Z. (1999) Toxicological Study of Two Pesticides on Earthworm Eisenia foetida. Chemosphere, 39, 2437-2356.
http://dx.doi.org/10.1016/S0045-6535(99)00142-3
[3]  Sizmur, T. and Hodson, M.E. (2009) Do Earthworms Impact Metal Mobility and Availability in Soil? A Review. Environmental Pollution, 157, 1981-1989.
http://dx.doi.org/10.1016/j.envpol.2009.02.029
[4]  Bartlett, M.D., Briones, M.J.I., Neilson, R., Schmidt, O., Spurgeon, D. and Creamer, R.E. (2010) A Critical Review of Current Methods in Earthworm Ecology: From Individuals to Populations. European Journal of Soil Biology, 46, 67-73.
http://dx.doi.org/10.1016/j.ejsobi.2009.11.006
[5]  Rombke, J.J., Rombke, S. and Didden, W. (2005) The Use of Earthworms in Ecological Soil Classification and Assessment Concepts. Ecotoxicology and Environmental Safety, 62, 249-265.
http://dx.doi.org/10.1016/j.ecoenv.2005.03.027
[6]  Belanger, D. (2009) Utilisation de la faune macrobenthique comme bioindicateur de la qualite de l’environment marin cotier, Sherbrooke (ed.), Quebec.
[7]  Calisi, A., Zaccarelli, N., Lionetto, M.G. and Schettino, T. (2013) Integrated Biomarker Analysis in the Earthworm Lumbricus terrestris: Application to the Monitoring of Soil Heavy Metal Pollution. Chemosphere, 90, 2637-2644.
http://dx.doi.org/10.1016/j.chemosphere.2012.11.040
[8]  Schreck, E., Geret, F., Gontier, L. and Treilhou, M. (2008) Neurotoxic Effect and Metabolic Responses Induced by a Mixture of Six Pesticides on Earthworm Aporrectodea Caliginosa nocturna. Chemosphere, 71, 1832-1893.
http://dx.doi.org/10.1016/j.chemosphere.2008.02.003
[9]  Pelosi, C., Joimel, S. and Makowski, D. (2013) Searching for a More Sensitive Earthworm Species to be Used in Pesticide Homologation Tests—A Meta-Analysis. Chemosphere, 90, 895-900.
http://dx.doi.org/10.1016/j.chemosphere.2012.09.034
[10]  Booth, L.H., Happelthwaite, V.J. and O’hallaron, K. (2000) Growth, Development and Fecundity of the Earthworm Aporrectodea calignosa after Exposure to Two Organophosphates. New Zealand Plant Protection, 53, 221-225.
[11]  Pandey, S. and Singh, D.K. (2004) Total Bacterial and Fungal Population after Chlorpyrifos and Quinalphos Treatments in Groundnut (Arachis hypogaea L.) Soil. Chemosphere, 55, 197-205.
http://dx.doi.org/10.1016/j.chemosphere.2003.10.014
[12]  Depledge, M.H. (1994) The Rational Basis for the Use of Biomarkers as Ecotoxicological tools. In: Fossi, M.C. and Leonzio, C., Eds., Nondestructive Biomarkers in Vertebrates, Lewis Publisher, Boca Raton, 271-295.
[13]  Denoyelle, R., Rault, M., Mazzia, C., Mascle, O. and Capowiez, Y. (2007) Cholinesterase Activity as a Biomarker of Pesticide Exposure in Allobophora chlorotica Earthworms Living in Apple Orchards under Different Management Strategies. Environmental Toxicology Chemistry, 26, 2644-2649.
http://dx.doi.org/10.1897/06-355.1
[14]  Reinecke, S.A. and Reinecke, A.J. (2007) The Impact of Organophosphate Pesticides in Orchards on Earthworms in the Western Cape, South Africa. Ecotoxicology and Environmental Safety, 66, 244-251.
http://dx.doi.org/10.1016/j.ecoenv.2005.10.006
[15]  Gastaldi, L., hankard, P., Peres, G., canesi, L., Viarengo, A. and Pons, G. (2007) Application of a Biomarker Battery for the Evaluation of the Sublethal Effects of Pollutants in the Earthworm Eisenia andrei. Comparative Biochemistry and Physiology C, 146,398-405.
http://dx.doi.org/10.1016/j.cbpc.2007.04.014
[16]  Walker, C.H. (1998) Biomarker Strategies to Evaluate the Environmental Effects of Chemicals. Environmental Health Perspectives, 106, 613-620.
[17]  Hagger, J.A., Jones, M.B., Leonard, D.L.P., Owen, R. and Galloway, T.S. (2006) Biomarkers and Integrated Environmental Risk Assessment: Are There More Questions Than Answers? Integrated Environmental Assessment and Management, 2, 312-329.
http://dx.doi.org/10.1002/ieam.5630020403
[18]  Edwards, C.A. and Bohlen, P.J. (1996) Biology and Ecology of Earthworms. 3rd Edition, Chapman & Hall, London
[19]  Fragoso, C., Brown, G.G., Patron, J.C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B. and Kumar, T. (1997) Agricultural Intensification, Soil Biodiversity and Agroesystem Function in the Tropics: The Role of Earthworms. Applied Soil Ecology, 6, 17-35.
http://dx.doi.org/10.1016/S0929-1393(96)00154-0
[20]  Sims, R.W. and Gerard, B.M. (1999) Earthworms. FSC Publications, London.
[21]  Jones, C.G., Lawton, J.H. and Shachak M. (1994) Organisms as Ecosystem Engineers. Oikos, 69, 373-386.
http://dx.doi.org/10.2307/3545850
[22]  Lavelle, P. and Spain, A.V. (2001) Soil Ecology. Kluwer Scientific, Amsterdam.
[23]  Pelosi, C., Barot, S., Capowiez, Y., Hedde, M. and Vandenbulcke, F. (2014) Pesticides and Earthworms. A Review. Agronomy for Sustainable Development, 34, 199-228.
http://dx.doi.org/10.1007/s13593-013-0151-z
[24]  Sanchez-Hernandez, J.C. (2006) Earthworms Biomarkers in Ecological Risk Assessment. In; Ware, G.W., et al., Eds., Reviews of Environmental Contamination and Toxicology, Springer, New York, 85-126.
http://dx.doi.org/10.1007/978-0-387-32964-2_3
[25]  Novais, S.C., Gomes, S.I.L., Gravato, C., Guilhermino, L., De Coen, W., Soares, A.M.V.M. and Amorim, M.J.B. (2011) Reproduction and Biochemical Responses in Enchytraeus albidus (Oligochaeta) to Zinc or Cadmium Exposures. Environmental Pollution, 159, 1836-1843.
http://dx.doi.org/10.1016/j.envpol.2011.03.031
[26]  Mekhalia, M.N., Tine, S., Menasria, T., Amieur, H. and Salhi, H. (2016) In Vitro Biomarker Responses of Earthworm Lumbricus terrestris Exposed to Herbicide Sekator and Phosphate Fertilizer. Water, Air, & Soil Pollution, 227, 15.
http://dx.doi.org/10.1007/s11270-015-2712-z
[27]  Lakhani, L., Khatri, A. and Choudhary, P. (2012) Effect of Dimethoate on Testicular Histomorphology of the Earthworm Eudichogaster kinneari (Stephenson). International Research Journal of Biological Sciences, 1, 77-80.
[28]  Mosleh, Y.Y., Paris-Palacios, S., Couderchet, M. and Vernet, G. (2003) Acute and Sublethal Effects of Two Insecticides on Earthworm (Lumbricus terrestris L.) under Conditions. Environmental Toxicology, 18, 1-8.
http://dx.doi.org/10.1002/tox.10095
[29]  Dutta, A. and Dutta, H. (2016) Some Insights on the Effect of Pesticides on Earthworms. International Research Journal of Environment Sciences, 5, 61-66.
[30]  Rault, M., Mazzia, C. and Capowiez, Y. (2007) Tissue Distribution and Characterization of Cholinesterase Activity in Six Earthworm Species. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 147, 340-346.
http://dx.doi.org/10.1016/j.cbpb.2007.01.022
[31]  Lionetto, M.G., Calisi, A. and Schettino, T. (2012) Chapter 16. Earthworm Biomarkers as Tools for Soil Pollution Assessment. In: Hernandez-Soriano, M.C., Ed., Soil Health and Land Use Management, InTech, Italy. www.intechopen.com
[32]  Caselli, F., Gastaldi, L., Gambi, N. and Fabbri, E. (2006) In Vitro Characterization of Cholinesterases in the Earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143, 416-421.
http://dx.doi.org/10.1016/j.cbpc.2006.04.003
[33]  Soreq, H. and Zakut. H. (1993) Human Cholinesterase and Anticholinesterase. Academic Press, New York.
[34]  Calisi, A., Lionetto, M.G. and Schettino, T. (2011) Biomarker Response in the Earthworm Lumbricus terrestris Exposed to Chemical Pollutants. Science of the Total Environment, 409, 4456-4464.
http://www.sciencedirect.com/science/article/pii/S0048969711007145
http://dx.doi.org/10.1016/j.scitotenv.2011.06.058
[35]  Rao, J.V., Pavan, Y.S. and Madhavendra, S.S. (2003) Toxic Effects of Chlorpyrifos on Morphology and Acetylcholinesterase Activity in the Earthworm, Eisenia foetida. Ecotoxicology and Environmental Safety, 54, 296-301.
http://dx.doi.org/10.1016/S0147-6513(02)00013-1
[36]  Rao, J.V. and Kavitha, P. (2004) Toxicity of Azodrin on the Morphology and Acetylcholinesterase Activity of the Earthworm Eisenia fetida. Environmental Research, 96, 323-327.
http://dx.doi.org/10.1016/j.envres.2004.02.014
[37]  EC (Council Regulation) (2001) Commission Directive 2001/58. Official Journal of the European Union, No. 212, 24-33.
[38]  Calisi, A., Lionetto, M.G. and Schettino, T. (2009) Pollutant-Induced Alterations of Granulocyte Morphology in the Earthworm Eisenia foetida. Ecotoxicology and Environmental Safety, 72, 1369-1377.
http://dx.doi.org/10.1016/j.ecoenv.2009.03.010
[39]  Lunt, G.G. (1991) GABA and GABA Receptors in Invertebrates. Seminars in Neuroscience, 3, 251-258.
http://dx.doi.org/10.1016/1044-5765(91)90022-G
[40]  Manna, S., Bhattacharya, D., Mandal, T.K. and Dey, S. (2005) Neuropharmacological Effects of Alfa-Cypermethrin in Rats. Indian Journal of Pharmacology, 37, 18-20.
http://dx.doi.org/10.4103/0253-7613.13849
[41]  Bloomquist, J.R. and Soderlund, D.M. (1985) Neurotoxic Insecticides Inhibit GABA-Dependent Chloride Uptake by Mouse Brain Vesicles. Biochemical and Biophysical Research Communications, 133, 37-43.
http://dx.doi.org/10.1016/0006-291X(85)91838-8
[42]  Ch, R., Singh, A.K., Pandey, P., Saxena, P.N. and Mudiam, M.K.R. (2015) Identifying the Metabolic Perturbations in Earthworm Induced by Cypermethrin Using Gas Chromatography-Mass Spectrometry Based Metabolomics. Scientific Reports, 5, Article No. 15674.
http://dx.doi.org/10.1038/srep15674
[43]  Banerjee, U.C., Sani, R.K., Azmi, W. and Soni, R. (1999) Thermostable Alkaline Protease from Bacillus brevis and Its Characterization as a Laundry Detergent Additive. Process Biochemistry, 35, 213-219.
http://dx.doi.org/10.1016/S0032-9592(99)00053-9
[44]  Lemaire, C., Damhaut, P., Plenevoux, A. and Cpmar, D. (1994) Enantioselective Synthesis of 6-[Fluorine-18]-Fluoro-L-Dopa from No-Carrier-Added Fluorine-18-Fluoride. Journal of Nuclear Medicine, 35, 1996-2002.
[45]  Cnubben, N.H.P., Rietjens, I.M.C.M., Wortelboer, H., van Zanden, J. and van Bladeren, P.J. (2001) The Interplay of Glutathione-Related Processes in Antioxidant Defense. Environmental Toxicology and Pharmacology, 10, 141-152.
http://dx.doi.org/10.1016/S1382-6689(01)00077-1
[46]  Khrer, J.P. (1993) Free Radical as Mediator of Tissue Injury and Disease. Critical Reviews in Toxicology, 23, 21-48.
http://dx.doi.org/10.3109/10408449309104073
[47]  Dazy, M., Masfaraud, J.F. and Férard, J.F. (2009) Induction of Oxidative Biomarkers Associated with Heavy Metal Stress in Fontinalis antipyretica Hedw. Chemosphere, 75, 297-302.
http://dx.doi.org/10.1016/j.chemosphere.2008.12.045
[48]  Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. (2006) Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicology and Environmental Safety, 64, 178-189.
http://dx.doi.org/10.1016/j.ecoenv.2005.03.013
[49]  Casillas, E., Myers, M. and Ames, E. (1983) Relationship of Serum Chemistry Values to Liver and Kidney Histophathology in English Sole (Parophrys vetulus) after Acute Exposure to Carbon Tetrachloride. Aquatic Toxicology, 3, 61-78.
http://dx.doi.org/10.1016/0166-445X(83)90007-3
[50]  Oruc, E.O., Sevgiler, Y. and Uner, N. (2004) Tissue-Specific Oxidative Stress Responses in Fish Exposed to 2,4-D and Azinphosmethyl. Comparative Biochemistry and Physiology: Toxicology & Pharmacology, 137, 43-51.
[51]  Hayes, J.D., Flanagan, J.U. and Jowsey, I.R. (2005) Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45, 51-88.
http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857
[52]  Aly, M.A. and Schroder, P. (2008) Effect of Herbicides on Glutathione S-Transferases in the Earthworm, Eisenia fetida. Environmental Science and Pollution Research, 15, 143-149.
http://dx.doi.org/10.1065/espr2007.02.385
[53]  Maity, S., Roy, S., Chaudhury, S. and Bhattacharya, S. (2008) Antioxidant Responses of the Earthworm Lampito mauritii Exposed to Pb and Zn Contaminated Soil. Environmental Pollution, 151, 1-7.
http://dx.doi.org/10.1016/j.envpol.2007.03.005
[54]  Lukkari, T., Taavistsainen, M., Vaisanen, A. and Haimi, J. (2004) Effects of Heavy Metals on Earthworms along Contamination Gradients in Organic Rich Soil. Ecotoxicology and Environmental Safety, 59, 340-348.
http://dx.doi.org/10.1016/j.ecoenv.2003.09.011
[55]  Saint-Denis, M., Narbonne, J.F., Arnaud, C. and Ribera, D. (2001) Biochemical Responses of the Earthworm Eisenia fetida andrei Exposed to Contaminated Artificial Soil: Effects of Lead Acetate. Soil Biology and Biochemistry, 33, 395-404.
http://dx.doi.org/10.1016/S0038-0717(00)00177-2
[56]  Booth, L.H., Heppelthwaite, V. and Mc Glinchy, A. (2000) The Effect of Environmental Parameters on Growth, Cholinesterase Activity and Glutathione S-Transferase Activity in the Earthworm Aporectodea caliginosa. Biomarkers, 5, 46-55.
http://dx.doi.org/10.1080/135475000230532
[57]  LaCourse, T. (2009) Environmental Change Controls Postglacial Forest Dynamics through Interspecific Differences in Life-History Traits. Ecology, 90, 2149-2160.
http://dx.doi.org/10.1890/08-1136.1
[58]  Shi, Y., Shi, Y., Wang, X., Lu, Y. and Yan, S. (2007) Comparative Effects of Lindane and Deltamethrin on Mortality, Growth, and Cellulase Activity in Earthworms (Eisenia fetida). Pesticide Biochemistry and Physiology, 89, 31-38.
http://dx.doi.org/10.1016/j.pestbp.2007.02.005
[59]  Mishra, P.C. and Dash, M.C. (1979) Digestive Enzymes of Some Earthworm. Experientia, 36, 1156-1157.
http://dx.doi.org/10.1007/BF01976096
[60]  Salokhe, S.G., Sonawane H.V. and Deshpande S.G. (2014) Laboratory Evaluation of Fipronil on Biological, Parameters, Gut Microflora and Physiology of Eudrilus eugeniae. International Journal of Scientific and Research Publications, 4, 1-6.
[61]  Martínez Morcillo, S., Yela, J.L., Capoweiz, Y., Mazzia, C., Rault, M. and Sachez-Hernandez, J.C. (2013) Avoidance Behaviour Response and Esterase Inhibition in the Earthworm, Lumbricus terrestris, after Exposure to Chlorpyrifos. Ecotoxicology, 22, 597-607.
http://dx.doi.org/10.1007/s10646-013-1051-3
[62]  First, M.R., Kalpan, L. and Pesce, A.J. (1991) Clinical Chemistry: Theory, Analysis, and Correlation. Mosby-Year Book, MO, 609-610.
[63]  Shekari, M., Sendi, J.J., Etebari, K., Ziaee, A. and Shadparvar, A. (2008) Effects of Artemisia annua L. (Asteracea) on Nutritional Physiology and Enzyme Activities of Elm Leaf Beetle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae). Pesticide Biochemistry and Physiology, 91, 66-74.
http://dx.doi.org/10.1016/j.pestbp.2008.01.003
[64]  Diamantino, T.C., Almeida, E., Soares, A.M. and Guilhermino, L. (2001) Lactate Dehydrogenase Activity as an Effect Criterion in Toxicity Tests with Daphnia magna Straus. Chemosphere, 45, 553-560.
http://dx.doi.org/10.1016/S0045-6535(01)00029-7
[65]  Ribeiro, S., Guilhermino, L., Sousa, J.P. and Soares, A.M.V.M. (1999) Novel Bioassay Based on Acetylcholinesterase and Lactate Dehydrogenase Activities to Evaluate the Toxicity of Chemicals to Soil Isopods. Ecotoxicology and Environmental Safety, 44, 287-293.
http://dx.doi.org/10.1006/eesa.1999.1837
[66]  Nathan, S.S., Kalaivani, K., Chung, P.G. and Murugan, K. (2006) Effect of Neem Limonoids on Lactate Dehydrogenase (LDH) of the Rice Leaffolder, Cnaphalocrocis medinalis (Guenée) (Insecta: Lepidoptera: Pyralidae). Chemosphere, 62, 1388-1393.
http://dx.doi.org/10.1016/j.chemosphere.2005.07.009
[67]  Riseh, N.S., Ghadamyari, M. and Motamediniya, B. (2012) Biochemical Characterization of α- and β-Glucosidases and α- and β-Galactosidases from Red Palm Weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionidae). Plant Protection Science, 2, 85-93.
[68]  Ribera, D., Narbonne, J.F., Arnaud, C. and Saint-Denis, M. (2001) Biochemical Responses of the Earthworm Eisenia fetida andrei Exposed to Contaminated Artificial Soil, Effects of Carbaryl. Soil Biology and Biochemistry, 33, 1123-1130.
http://dx.doi.org/10.1016/S0038-0717(01)00035-9
[69]  Booth, L.H. and O’Halloran, K. (2001) A Comparison of Biomarker Responses in the Earthworm Aporrectodea caliginosa to the Organophosphorus Insecticides Diazinon and Chlorpyrifos. Environmental Toxicology and Chemistry, 20, 2494-2502.
http://dx.doi.org/10.1002/etc.5620201115
[70]  Govindarajan, B. and Prabakaran, V. (2012) Monitoring of Soil Insecticide (Monocrotophos) Pollution by Eisenia fetida. Journal of Biosciences Research, 3, 58-61.
[71]  Gambi, N., Pasteris, A. and Fabbri, E. (2007) Acetylcholinesterase Activity in the Earthworm Eisenia andrei at Different Conditions of Carbaryl Exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145, 678-685.
http://dx.doi.org/10.1016/j.cbpc.2007.03.002
[72]  Panda, S. and Sahu, S.K. (2004) Recovery of Acetylcholine Esterase Activity of Drawida willsi (Oligochaeta) Following Application of Three Pesticides to Soil. Chemosphere, 55, 283-290.
http://dx.doi.org/10.1016/j.chemosphere.2003.10.052
[73]  Muangphra, P., Tharapoom, K., Euawong, N., Namchote, S. and Gooneratne, R. (2015) Chronic Toxicity of Commercial Chlorpyrifos to Earthworm Pheretima peguana. Environmental Toxicology, 31, 1450-1459.
https://doi.org/10.1002/tox.22150
[74]  Saint-Denis, M., Narbonne, J.F., Arnaud, C., Thybaud, E. and Ribera, D. (1999) Bio-Chemical Responses of the Earthworm Eisenia fetida andrei Exposed to Contaminated Artificial Soil: Effects of Benzo(a)pyrene. Soil Biology and Biochemistry, 31, 1837-1846.
http://dx.doi.org/10.1016/S0038-0717(99)00106-6
[75]  Ling, H. (2006) Effect of Carbofuran on Protein Content and the SOD and TChE Activity of the Eisenia foetida Earthworm. Journal of Anhui Agricultural Science, 34, 3165.
[76]  Xu, J., Zhang, P., Mu, H. and Gao, M.L. (2006) Toxicity Effect of Combined Contamination of Two Herbicides to Earthworm. Journal of Agro-Environmental Science, 5, 18.
[77]  Wang, J.H., Zhu, L.S., Liu, W., Wang, J. and Xie, H. (2012) Biochemical Responses of Earthworm (Eisenia foetida) to the Pesticides Chlorpyrifos and Fenvalerate. Toxicology Mechanisms and Methods, 22, 236-241.
http://dx.doi.org/10.3109/15376516.2011.640718
[78]  Zhang, Q., Zhu, L., Wang, J., Xie, H., Wang, J., Han, Y. and Yang, J. (2013) Oxidative Stress and Lipid Peroxidation in the Earthworm Eisenia fetida Induced by Low Doses of Fomesafen. Environmental Science and Pollution Research, 20, 201-208.
http://dx.doi.org/10.1007/s11356-012-0962-5
[79]  Wang, K., Pang, S., Mu, X., Qi, S., Li, D., Cui, F. and Wang, C. (2015) Biological Response of Earthworm, Eisenia fetida, to Five Neonicotinoid Insecticides. Chemosphere, 132, 120-126.
http://dx.doi.org/10.1016/j.chemosphere.2015.03.002
[80]  Brown, P.J., Long, S.M., Spurgeon, D.J., Svendsen, C. and Hankard, P.K. (2004) Toxicological and Biochemical Responses of the Earthworm Lumbricus rubellus to Pyrene, a Non-Carcinogenic Polycyclic Aromatic Hydrocarbon. Chemosphere, 57, 1675-1681.
http://dx.doi.org/10.1016/j.chemosphere.2004.05.041
[81]  Leena, L., Amrita, K. and Preeti, C. (2012) Effect of Dimethoate on Testicular Histomorphology of the Earthworm Eudichogaster kinneari. International Research Journal of Biological Sciences, 1, 77-80.
[82]  Datta, S., Singh, J., Singh, S. and Singh, J. (2016) Earthworms, Pesticides and Sustainable Agriculture: A Review. Environmental Science and Pollution Research, 23, 8227-8243.
http://dx.doi.org/10.1007/s11356-016-6375-0

Full-Text

comments powered by Disqus