Aim: In this study we investigated the changes in anterior segment morphology in
pseudophakia patients that underwent ultrasound biomicroscopy (UBM) after pars
plana vitrectomy (PPV) operation without use of tamponade. Method: Pseudophakic
patients who undergo PPV were enrolled in this prospective study between October
2012 and April 2015. Study included patients in whom intraocular tamponade
was not used during PPV operation. UBM measurements were performed both before
and 10 days after the operation. Anterior chamber depth (ACD) was measured
using axial images of anterior segment. Trabecular meshwork-iris angle (TIA), ciliary
body thickness (CBT), sclera thickness (ST), trabecular meshwork-ciliary process
distance (T-CPD), iris-ciliary processes distance (I-CPD), and iris thickness (IT)
were measured at temporal quadrant based on radial section images of the angle.
Values measured before and after the operation were statistically compared with
each other. Results: This study included 30 patients (18 females, 12 males) that underwent
an operation ultrasound biomicroscopy (UBM) after pars plana vitrectomy
(PPV) operation without use of tamponade. Mean age was 69.6 ± 9.1 (55 - 85) years.
Eighteen operations occurred on the left eye whereas twelve operations occurred on
the right eye. CBT1, CBT2, CBT Max, T-CPD, and I-CPD were significantly decreased
after operation when compared with the values of baseline (before) (p =
0.018, p = 0.012, p = 0.001, p = 0.033, p = 0.015, respectively). Other evaluated parameters
did not show statistically significant changes after the operation (p > 0.05). Discussion: PPV results in significant changes in ciliary body morphology together
with changes in anterior segment parameters in pseudophakic cases.
References
[1]
Pavlin, C.J., Sherar, M.D. and Foster, F.S. (1990) Subsurface Ultrasound Microscopic Imaging of the Intact Eye. Ophthalmology, 97, 244-250. http://dx.doi.org/10.1016/S0161-6420(90)32598-8
[2]
ünsal, E., Eltutar, K. and Muftuoglu, I.K. (2016) Morphologic Changes in the Anterior Segment Using Ultrasound Biomicroscopy after Cataract Surgery and Intraocular Lens Implantation. European Journal of Ophthalmology. http://dx.doi.org/10.5301/ejo.5000812
[3]
ünsal, E., Eltutar, K., Muftuoglu, I., Akcetin, T.A. and Acar, Y. (2015) Ultrasound Biomicroscopy in Patients with Unilateral Pseudoexfoliation. International Journal of Ophthalmology, 18, 754-758.
[4]
Benitez-Herreros, J., Lopez-Guajardo, L., Camara-Gonzalez, C., Perez-Crespo, A., Vazquez-Blanco, M. and Silva-Mato, A. (2014) Influence of the Source of Incisional Vitreous Incarceration on Sclerotomy Closure Competency after Transconjunctival Sutureless Vitrectomy. Current Eye Research, 39, 1194-1199. http://dx.doi.org/10.3109/02713683.2014.905609
[5]
Wu, N. and Zhang, H. (2013) Ultrasound Biomicroscopy of Hyperpressurized Eyes Following Pars Plana Vitrectomy. Experimental and Therapeutic Medicine, 6, 769-772.
[6]
Benitez-Herreros, J., Lopez-Guajardo, L., Camara-Gonzalez, C., Perez-Crespo, A., Silva-Mato, A., Alvaro-Meca, A., et al. (2014) Evaluation of Conjunctival Bleb Detection after Vitrectomy by Ultrasound Biomicroscopy, Optical Coherence Tomography and Direct Visualization. Current Eye Research, 39, 390-394. http://dx.doi.org/10.3109/02713683.2013.810272
[7]
You, C., Wu, X., Ying, L. and Xie, L. (2010) Ultrasound Biomicroscopy Imaging of Sclerotomy in Children with Cataract Undergoing 25-Gauge Sutureless Pars Plana Anterior Vitrectomy. European Journal of Ophthalmology, 20, 1053-1058.
[8]
Gutfleisch, M., Dietzel, M., Heimes, B., Spital, G., Pauleikhoff, D. and Lommatzsch, A. (2010) Ultrasound Biomicroscopic Findings of Conventional and Suturelesssclerotomy Sites after 20-, 23-, and 25-G Pars Plana Vitrectomy. Eye (London), 24, 1268-1272. http://dx.doi.org/10.1038/eye.2009.291
[9]
Nehemy, M.B., Zisman, M., Marigo, F.A., Nehemy, P.G. and Schachat, A.P. (2008) Ultrasound Biomicroscopy after Vitrectomy in Eyes with Normal Intraocular Pressure and in Eyes with Chronic Hypotony. European Journal of Ophthalmology, 18, 614-618.
[10]
Hershberger, V.S., Augsburger, J.J., Hutchins, R.K., Raymond, L.A. and Krug, S. (2004) Fibrovascular Ingrowth at Sclerotomy Sites in Vitrectomized Diabetic Eyes with Recurrent Vitreous Hemorrhage: Ultrasound Biomicroscopy Findings. Ophthalmology, 111, 1215-1221. http://dx.doi.org/10.1016/j.ophtha.2003.08.043
[11]
ünsal, E., Eltutar, K., Karini, B. and Kizilay, O. (2016) Assessment of Anterior Segment Changes in Pseudophakic Eyes, Using Ultrasonic Biomicroscopic Imaging, after Pars Plana Vitrectomy with Silicone Oil or Gas Tamponade. Journal of Ophthalmology, 2016, Article ID: 8303792. http://dx.doi.org/10.1155/2016/8303792
[12]
Ishikawa, H., Liebmann, J.M. and Ritch, R. (2000) Quantitative Assessment of the Anterior Segment Using Ultrasound Biomicroscopy. Current Opinion in Ophthalmology, 11, 133-139. http://dx.doi.org/10.1097/00055735-200004000-00012
[13]
Pavlin, C.J., Harasiewicz, K. and Sherar, M.D. (1991) Foster FS. Clinical Use of Ultrasound Biomicroscopy. Ophthalmology, 98, 287-295. http://dx.doi.org/10.1016/S0161-6420(91)32298-X
[14]
Pavlin, C.J., Harasiewicz, K. and Foster, F.S. (1992) Ultrasound Biomicroscopy of Anterior Segment Structures in Normal and Glaucomatous Eyes. American Journal of Ophthalmology, 113, 381-389. http://dx.doi.org/10.1016/S0002-9394(14)76159-8
[15]
Urbak, S.F., Pedersen, J.K. and Thorsen, T.T. (1998) Ultrasound Biomicroscopy. II. Intraobserver and Interobserver Reproducibility of Measurements. Acta Ophthalmologica Scandinavica, 76, 546-549. http://dx.doi.org/10.1034/j.1600-0420.1998.760507.x
[16]
Spaeth, G.L., Azuara-Blanco, A., Araujo, S.V. and Augsburger, J.J. (1997) Intraobserver and interobserver Agreement in Evaluating the Anterior Chamber Angle Configuration by Ultrasound Biomicroscopy. Journal of Glaucoma, 6, 13-17. http://dx.doi.org/10.1097/00061198-199702000-00004
[17]
Calik, B., Oztürk, M., Serdarogullari, H. and Elcioglu, M. (2013) Evaluation of Anterior Segment Parameters Using Pentacam in Silicone Oil-Injected Patients after Pars Plana Vitrectomy. Indian Journal of Ophthalmology, 61, 621-625. http://dx.doi.org/10.4103/0301-4738.123137
[18]
Neudorfer, M., Oren, N. and Barak, A. (2011) High-Frequency Ultrasound Biomicroscopy of the Anterior Segment Morphometry before and Immediately after Pars Plana Vitrectomy. European Journal of Ophthalmology, 21, 73-78. http://dx.doi.org/10.5301/EJO.2010.4949
[19]
Kim, C. and Yu, H.G. (2012) Changes in Ciliary Body Thickness in Patients with Diabetic Macular Edema after Vitrectomy. Retina, 32, 1316-1323. http://dx.doi.org/10.1097/IAE.0b013e318236e81d
[20]
Tripathy, K., Sharma, Y.R., Chawla, R., Gogia, V., Singh, S.K., et al. (2015) Recent Advances in Management of Diabetic Macular Edema. Current Diabetes Reviews, 11, 79-97. http://dx.doi.org/10.2174/1573399811999150324120640
[21]
Agarwal, A., Sarwar, S., Sepah, Y.J. and Nguyen, Q.D. (2015) What Have We Learnt about the Management of Diabetic Macular Edema in the Antivascular Endothelial Growth Factor and Corticosteroid Era? Current Opinion in Ophthalmology, 26, 177-183. http://dx.doi.org/10.1097/ICU.0000000000000152
[22]
Adelman, R., Parnes, A., Michalewska, Z., Parolini, B., Boscher, C. and Ducournau, D. (2015) Strategy for the Management of Diabetic Macular Edema: The European Vitreo-Retinal Society Macular Edema Study. Biomed Research International, 2015, Article ID: 352487. http://dx.doi.org/10.1155/2015/352487
[23]
Stewart, M.W. (2014) Anti-VEGF Therapy for Diabetic Macular Edema. Current Diabetes Reports, 14, 510. http://dx.doi.org/10.1007/s11892-014-0510-4
[24]
Lee, S.S., Ghosn, C., Yu, Z., Zacharias, L.C., Kao, H., Lanni, C., et al. (2010) Vitreous VEGF Clearance Is Increased after Vitrectomy. Investigative Ophthalmology & Visual Science, 51, 2135-2138. http://dx.doi.org/10.1167/iovs.09-3582
[25]
Bonnin, S., Sandali, O., Bonnel, S., Monin, C. and El Sanharawi, M. (2015) Vitrectomy with Internal Limiting Membrane Peeling for Tractinal and Nontractional Diabetic Macular Edema: Long-Term Results of a Comparative Study. Retina, 35, 921-928. http://dx.doi.org/10.1097/IAE.0000000000000433
[26]
Sonoda, S., Sakamoto, T., Shirasawa, M., Yamashita, T., Otsuka, H. and Terasaki, H. (2013) Correlation between Reflectivity of Subretinal Fluid in OCT Images and Concentration of Intravitreal VEGF in Eyes with Diabetic Macular Edema. Investigative Ophthalmology & Visual Science, 54, 5367-5374. http://dx.doi.org/10.1167/iovs.13-12382
[27]
Pei-Pei, W., Shi-Zhou, H., Zhen, T., Lin, L., Ying, L., Jiexiong, O., et al. (2015) Randomised Clinical Trial Evaluating Best-Corrected Visual Acuity and Centralmacular Thickness after 532-nm Subthreshold Laser Grid Photocoagulation Treatment in Diabetic Macular Oedema. Eye, 29, 313-321 http://dx.doi.org/10.1038/eye.2015.1
[28]
Inagaki, K., Ohkoshi, K., Ohde, S., Deshpande, G.A., Ebihara, N. and Murakami, A. (2015) Comparative Efficacy of Pure Yellow (577-nm) and 810-nm Subthreshold Micropulse Laser Photocoagulation Combined with Yellow (561-577-nm) Direct Photocoagulation for Diabetic Macular Edema. Japanese Journal of Ophthalmology, 59, 21-28. http://dx.doi.org/10.1007/s10384-014-0361-1
[29]
Marigo, F.A., Zisman, M., Nehemy, M.B. and Marigo, P.V.B. (2006) Ultrasound Biomicroscopy in the Comparison of the Anterior Segment Morphometry before and after Pars Plana Vitrectomy. Arquivos Brasileiros de Oftalmologia, 69, 919-922. http://dx.doi.org/10.1590/S0004-27492006000600023
[30]
ünsal, E., Eltutar, K., Alikma, M.S., Kizilay, O. and Karini, B. (2016) Appraisement of Anterior Segment Changes Caused by Vitrectomy without Internal Tamponade Using Ultrasonic Biomicroscopy in Phakic Eyes. Istanbul Medical Journal, 17, 14-19. http://dx.doi.org/10.5152/imj.2016.91069