All Title Author
Keywords Abstract

Expression Analysis of WRKY Transcription Factor Genes in Response to Abiotic Stresses in Horsegram (Macrotyloma uniflorum (Lam.) Verdc.)

DOI: 10.4236/ajmb.2016.64013, PP. 125-137

Keywords: Drought, Salt, Lipid Peroxidation, Plant Abiotic Stress, qRT-PCR, Reactive Oxygen Species, WRKY

Full-Text   Cite this paper   Add to My Lib


Drought and salt stress are two major environmental constraints that limit the productivity of agriculture crops worldwide. WRKY transcription factors are the plant-specific transcription factors that regulate several developmental events and stress responses in plants. The WRKY domain is defined by a 60-amino acid conserved sequence named WRKYGQK at N-terminal and a Zinc Finger-like motif at the C-terminal. WRKY genes are known to respond several stresses which may act as negative or positive regulators. The function of most of the WRKY transcription factors from non-model plants remains poorly understood. This investigation shows the expression levels of eight WRKY transcription factor genes from horsegram plant under drought and salt stress conditions. The increase in mRNA transcript levels of WRKY transcription factor genes was found to be high in drought stressed plants compared to salt-stressed plants. The levels of MDA which indicates the lipid peroxidation were less in drought stress. More ROS is produced in salt stress conditions compared to drought. The results show that the expression of WRKY transcription factors in drought stress conditions is reducing the adverse effect of stress on plants. These results also suggest that, during abiotic stress conditions such as drought and salt stress, WRKY transcription factors are regulated at the transcription level.


[1]  Wang, Y. and Frei, M. (2011) Stressed Food—The Impact of Abiotic Environmental Stresses on Crop Quality. Agriculture, Ecosystems & Environment, 141, 271-286.
[2]  Khelil, A., Menu, T. and Ricard, B. (2007) Adaptive Response to Salt Involving Carbohydrate Metabolism in Leaves of a Salt-Sensitive Tomato Cultivar. Plant Physiology and Biochemistry, 45, 551-559.
[3]  Wang, W., Vinocur, B. and Altman, A. (2003) Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta, 218, 1-14.
[4]  Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought Responsive Cis-Element in the Early Responsive to Dehydration Stress 1 Promoter. Plant Cell, 16, 2481-2498.
[5]  Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003) Regulatory Network of Gene Expression in the Drought and Cold Stress Responses. Current Opinion in Plant Biology, 6, 410-417.
[6]  Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000) The WRKY Superfamily of Plant Transcription Factors. Trends in Plant Science, 5, 199-206.
[7]  Yang, B., Jiang, Y.Q., Rahman, M.H., Deyholos, M.K. and Kav, N.N.V. (2009) Identification and Expression Analysis of WRKY Transcription Factor Genes in Canola (Brassica napus L.) in Response to Fungal Pathogens and Hormone Treatments. BMC Plant Biology, 9, 68.
[8]  Pan, L.J. and Jiang, L. (2014) Identification and Expression of the WRKY Transcription Factors of Carica papaya in Response to Abiotic and Biotic Stresses. Molecular Biology Reports, 41, 1215-1225.
[9]  Johnson, C.S., Kolevski, B. and Smyth, D.R. (2002) TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. The Plant Cell, 14, 1359-1375.
[10]  Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A. and Mittler, R. (2002) Molecular and Biochemical Mechanisms Associated with Dormancy and Drought Tolerance in the Desert Legume Retama raetam. Plant Journal, 31, 319-330.
[11]  Zheng, Z., Qamar, S.A., Chen, Z. and Mengiste, T. (2006) Arabidopsis WRKY33 Transcription Factor Is Required for Resistance to Necrotrophic Fungal Pathogens. Plant Journal, 48, 592-605.
[12]  Mare, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A.M. and Cattivelli, L. (2004) Hv-WRKY38: A New Transcription Factor Involved in Cold- and Drought-Response in Barley. Plant Molecular Biology, 55, 399-416.
[13]  Gong, X., Hu, J. and Liu, J. (2014) Cloning and Characterization of FcWRKY40, A WRKY Transcription Factor from Fortunella crassifolia Linked to Oxidative Stress Tolerance. Plant Cell Tissue and Organ Culture, 119, 197-210.
[14]  Li, H., Gao, Y., Xu, H., Dai, H., Deng, D. and Chen, J. (2013) ZmWRKY33, a WRKY Maize Transcription Factor Conferring Enhanced Salt Stress Tolerances in Arabidopsis. Plant Growth Regulation, 70, 207-216.
[15]  Garg, N. and Manchanda, G. (2009) ROS Generation in Plants: Boon or Bane? Plant Biosystems, 143, 8-96.
[16]  Montillet, J.L., Chamnongpol, S., Rusterucci, C., Dat, J., van de Cotte, B., Agnel, J.P., Battesti, C., Inze, D., Van Breusegem, F. and Triantaphylides, C. (2005) Fatty Acid Hydroperoxides and H2O2 in the Execution of Hypersensitive Cell Death in Tobacco Leaves. Plant Physiology, 138, 1516-1526.
[17]  Yannarelli, G.G., Noriega, G., Batlle, A. and Tomaro, M. (2006) Heme Oxygenase Up-Regulation in Ultraviolet-B Irradiated Soybean Plants Involves Reactive Oxygen Species. Planta, 224, 1154-1162.
[18]  Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gomez, M., Del Rio, L.A. and Sandalio, L.M. (2004) Chadmium-Induced Subcellular Accumulation of O2- and H2O2 in Pea Leaves. Plant Cell & Environment, 27, 1122-1134.
[19]  Hodges, D.M., Delong, J.M., Forney, C.F. and Prange, R.K. (1999) Improving the Thiobarbitric Acid Reactive Substance Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta, 207, 604-611.
[20]  Hu, W., Yuan, Q., Wang, Y., Cai, R., Deng, X., Wang, J., Zhou, S., Chen, M., Chen, L., Huang, C., Ma, Z., Yang, G. and He, G. (2012) Over-expression of a Wheat Aquaporin Gene, TaAQP8, Enhances Salt Stress Tolerance in Transgenic Tobacco. Plant and Cell Physiology, 53, 2127-2141.
[21]  Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408.
[22]  Munns, R. (1993) physiological Process Limiting Plant Growth Saline Soils Some Dogmas and Hypotheses. Plant Cell & Environment, 16, 15-24.
[23]  Chen, J., Shiyab, S., Han, F.X., Monts, D.L., Waggoner, A.W. and Su, Z.Y. (2009) Bioaccumulation and Physiological Effects of Mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110-121.
[24]  Wang, X. and Han, J. (2009) Changes of Proline Content, Activity, and Active Isoforms of Antioxidative Enzymes in Two Alfalfa Cultivars under Salt Stress. Agriculture Sciences in China, 8, 431-440.
[25]  Nareshkumar, A., Nagamallaiah, G.V., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., Venkatesh, B. and Sudhakar, C. (2015) Pb-Stress Induced Oxidative Stress Caused Alterations in Antioxidant Efficacy in Two Groundnut (Arachis hypogaea L.) Cultivars. Agricultural Sciences, 6, 1283-1297.
[26]  Zhu, Z., Shi, J., Cao, J., He, M. and Wang, Y. (2012) VpWRKY3, a Biotic and Abiotic Stress-Related Transcription Factor from Chinese Wild Vitis pseudoreticulata. Plant Cell Reports, 11, 2109-2120.
[27]  Jing, S.J., Zhou, X., Song, Y. and Yu, D.Q. (2009) Heterogonous Expression of OsWRKY23 Gene Enhances Pathogen Defence and Dark Induced Leaf Senescence in Arabidopsis. Plant Growth Regulation, 58, 181-190.
[28]  Yang, P., Chen, C., Wang, Z., Fan, B. and Chen, Z. (1999) A Pathogen- and Salicylic Acid-Induced WRKY DNA-Binding Activity Recognizes the Elicitor Response Element of the Tobacco Class I Chitinase Gene Promoter. Plant Journal, 18, 141-149.
[29]  Ishiguro, S. and Nakamura, K. (1994) Characterization of a cDNA Encoding a Novel DNA-Binding Protein, SPF1, That Recognizes SP8 Sequences in the 5’ Upstream Regions of Genes Coding for Sporamin and β-Amylase from Sweet Potato. Molecular and General Genetics, 244, 563-571.
[30]  Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K. and Somssich, I.E. (1996) Interaction of Elicitor-Induced DNA-Binding Proteins with Elicitor Response Elements in the Promoters of Parsley PR1 Genes. EMBO Journal, 15, 5690-5700.
[31]  De Pater, S., Greco, V., Pham, K., Memelink, J. and Kijne, J. (1996) Characterization of a Zinc-Dependent Transcriptional Activator from Arabidopsis. Nucleic Acids Research, 24, 4624-4631.
[32]  Oh, S.K., Baek, K.H., Park, J.M., Yi, S.Y., Yu, S.H., Kamoun, S. and Choi, D. (2008) Capsicum Annuum WRKY protein CaWRKY1 Is a Negative Regulator of Pathogen Defence. New Phytologist, 177, 977-989.
[33]  Cai, M., Qiu, D., Yuan, T., Ding, X., Li, H., Duan, L., Xu, C., Li, X. and Wang, S. (2008) Identification of Novel Pathogen-Responsive Cis-Elements and Their Binding Proteins in the Promoter of OsWRKY13, a Gene Regulating Rice Disease Resistance. Plant Cell and Environment, 31, 86-96.
[34]  Yu, F.F., Huaxia, Y.F., Lu, W.J., Wu, C. and Guo, X.Q. (2012) GhWRKY15, a Member of the WRKY Transcription Factor Family Identified from Cotton (Gossypium hirsutum L.), Is Involved in Disease Resistance and Plant Development. BMC Plant Biology, 12, 144.
[35]  Jiang, Y.J., Liang, G. and Yu, D.Q. (2012) Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis. Molecular Plant, 5, 1375-1388.
[36]  Cai, R., Zhao, Y., Wang, Y., Lin, Y., Peng, X., Li, Q., Chang, Y., Jiang, H., Xiang, Y. and Cheng, B. (2014) Overexpression of a Maize WRKY58 Gene Enhances Drought and Salt Tolerance in Transgenic Rice. Plant Cell Tissue and Organ Culture, 119, 565-577.
[37]  Liu, Q., Xu, K., Pan, Y., Jiang, B., Liu, G., Jia, Y. and Zhang, H. (2014) Functional Analysis of a Novel Chrysanthemum WRKY Transcription Factor Gene Involved in Salt Tolerance. Plant Molecular Biology Reports, 32, 282-289.
[38]  Zhang, F.Q., Wang, Y.S., Lou, Z.P. and Dong, J.D. (2007) Effect of Heavy Metal Stress on Antioxidative Enzymes and Lipid Peroxidation in Leaves and Roots of Two Mangrove Plant Seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44-50.


comments powered by Disqus