All Title Author
Keywords Abstract


Surface Properties of Cement Paste Evaluated by Scanning Probe Microscopy

DOI: 10.4236/ojce.2016.64052, PP. 643-652

Keywords: Cement Paste, Scanning Probe Microscopy, Surface Potential, Frictional Resistance, Viscoelasticity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contacting surfaces with a slide glass during the curing were studied. Scanning Electron Microscope (SEM) observation at a magnification of 7000 revealed smooth surfaces with no holes. The surface roughness calculated from the SPM measurement was 4 nm. The surface potential and the frictional force measured by SPM were uniform throughout the measured area 24 h after the curing. However, spots of low surface potential and stains of low frictional force and low viscoelasticity were observed one month after curing. This change was attributed to the carbonation of hydrates.

References

[1]  Elakneswaran, Y., Nawa, T. and Kurumisawa, K. (2009) Influence of Surface Charge on Ingress of Chloride Ion in Hardened Pastes. Materials and Structures, 42, 83-93.
http://dx.doi.org/10.1617/s11527-008-9368-8
[2]  Elakneswaran, Y., Nawa, T. and Kurumisawa, K. (2009) Zeta Potential Study of Paste Blends with Slag. Cement and Concrete Composites, 31, 72-76.
http://dx.doi.org/10.1016/j.cemconcomp.2008.09.007
[3]  Kanazawa, T., Kikuchi, M., Saeki, T. and Saito, T. (2013) Effects of Zeta Potential on Diffusion of Chloride Ion in Hardened Cementitious Materials. Cement Science and Concrete Technology, 67, 378-385.
http://dx.doi.org/10.14250/cement.67.378
[4]  Bhushan, B. and Othmar, M. (2011) Scanning Probe Microscopy—Principle of Operation, Instrumentation, and Probes. In: Bhushan, B., Ed., Nanotribology and Nanomechanics I, Springer Berlin, Heidelberg, 37-110.
http://dx.doi.org/10.1007/978-3-642-15283-2_2
[5]  Chen, X.Q., Yamada, H., Horiuchi, T., Matsushige, K., Watanabe, S., Kawai, M. and Weiss, P.S. (1999) Surface Potential of Ferroelectric Thin Films Investigated by Scanning Probe Microscopy. Journal of Vacuum Science & Technology B, 17, 1930-1934.
http://dx.doi.org/10.1116/1.590851
[6]  Zhang, L., Sakai, T., Sakuma, N., Ono, T. and Nakayama, K. (1999) Nanostructural Conductivity and Surface-Potential Study of Low-Field-Emission Carbon Films with Conductive Scanning Probe Microscopy. Applied Physics Letters, 75, 3527-3529.
http://dx.doi.org/10.1063/1.125377
[7]  Kalinin, S.V. and Bonnell, D.A. (2001) Temperature Dependence of Polarization and Charge Dynamics on the BaTiO3 (100) Surface by Scanning Probe Microscopy. Applied Physics Letters, 78, 1116-1118.
http://dx.doi.org/10.1063/1.1348303
[8]  Bhushan, B. and Goldade, A.V. (2000) Measurements and Analysis of Surface Potential Change during Wear of Single-Crystal Silicon (100) at Ultralow Loads Using Kelvin Probe Microscopy. Applied Surface Science, 157, 373-381.
http://dx.doi.org/10.1016/S0169-4332(99)00553-X
[9]  Chen, X., Yamada, H. and Matsushige, K. (1999) Investigation of Surface Potential of Ferroelectric Organic Molecules by Scanning Probe Microscopy. Japanese Journal of Applied Physics, 38, 3932.
http://dx.doi.org/10.1143/JJAP.38.3932
[10]  Lesko, S., Lesniewska, E., Nonat, A., Mutin, J.C. and Goudonnet, J.P. (2001) Investigation by Atomic Force Microscopy of Forces at the Origin of Cement Cohesion. Ultramicroscopy, 86, 11-21.
http://dx.doi.org/10.1016/S0304-3991(00)00091-7
[11]  Saez de Ibarra, Y., Gaitero, J. J., Erkizia, E. and Campillo, I. (2006) Atomic Force Microscopy and Nanoindentation of Cement Pastes with Nanotube Dispersions. Physica Status Solidi (a), 203, 1076-1081.
http://dx.doi.org/10.1002/pssa.200566166
[12]  Mondal, P., Shah, S.P. and Marks, L. (2007) A Reliable Technique to Determine the Local Mechanical Properties at the Nanoscale for Cementitious Materials. Cement and Concrete Research, 37, 1440-1444.
http://dx.doi.org/10.1016/j.cemconres.2007.07.001
[13]  Trtik, P., Kaufmann, J. and Volz, U. (2012) On the Use of Peak-Force Tapping Atomic Force Microscopy for Quantification of the Local Elastic Modulus in Hardened Cement Paste. Cement and Concrete Research, 42, 215-221.
http://dx.doi.org/10.1016/j.cemconres.2011.08.009
[14]  Sakai, Y., Nakatani, M., Takeuchi, A., Omorai, Y. and Kishi, T. (2016) Mechanical Behavior of Cement Paste and Alterations of Hydrates under High-Pressure Triaxial Testing. Journal of Advanced Concrete Technology, 14, 1-12.
http://dx.doi.org/10.3151/jact.14.1
[15]  Sakai, Y., Tarekegne, B.T. and Kishi, T. (2016) Recycling of Hardened Cementitious Material by Pressure and Control of Volumetric Change. Journal of Advanced Concrete Technology, 14, 47-54.
http://dx.doi.org/10.3151/jact.14.47
[16]  Andrade, C., Castellote, M., Sarría, J. and Alonso, C. (1999) Evolution of Pore Solution Chemistry, Electro-Osmosis and Rebar Corrosion Rate Induced by Realkalisation. Materials and Structures, 32, 427-436.
http://dx.doi.org/10.1007/BF02482714

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal