In this work, aqueous glycerol solutions are atomized to investigate the influence of the viscosity on the droplet size and the general atomization behavior in a setup using standing surface acoustic waves (sSAW) and a fluid supply at the boundary of the acoustic path. Depending on the fluid viscosity, the produced aerosols have a monomodal or polymodal size distribution. The mean droplet size in the dominant droplet fraction, however, decreases with increasing viscosity. Our results also indicate that the local wavefield conditions are crucial for the atomization process.
References
[1]
Kurosawa, M., Watanabe, T., Futami, A. and Higuchi, T. (1995) Surface Acoustic Wave Atomizer. Sensors and Actuators A: Physical, 50, 69-74.
http://dx.doi.org/10.1016/0924-4247(96)80086-0
[2]
Kurosawa, M., Watanabe, T. and Higuchi, T. (1995) Surface Acoustic Wave Atomizer with Pumping Effect. IEEE Proceedings of Micro Electro Mechanical Systems, Amsterdam, 29 January-2 February 1995, 25-30. http://dx.doi.org/10.1109/memsys.1995.472559
[3]
Collins, D.J., Manor, O., Winkler, A., Schmidt, H., Friend, J.R. and Yeo, L.Y. (2012) Atomization Off Thin Water Films Generated by High-Frequency Substrate Wave Vibrations. Physical Review E, 86, 1-9. http://dx.doi.org/10.1103/PhysRevE.86.056312
[4]
Qi, A., Yeo, L.Y. and Friend, J.R. (2008) Interfacial Destabilization and Atomization Driven by Surface Acoustic Waves. Physics of Fluids, 20, 1-14.
http://dx.doi.org/10.1103/PhysRevE.86.056312
[5]
Taller, D., Go, D.B. and Chang, H.C. (2013) Modulated Exponential Films Generated by Surface Acoustic Waves and Their Role in Liquid Wicking and Aerosolization at a Pinned Drop. Physical Review E, 87, Article ID: 053004.
http://dx.doi.org/10.1103/physreve.87.053004
[6]
Ang, K.M., Yeo, L.Y., Hung, Y.M. and Tan, M.K. (2016) Graphene-Mediated Microfluidic Transport and Nebulization via High Frequency Rayleigh Wave Substrate Excitation. Lab on a Chip, 16, 3503-3514. http://dx.doi.org/10.1039/C6LC00780E
[7]
Qi, A.S., Friend, J.R., Yeo, L.Y., Morton, D.A.V., McIntosh, M.P. and Spiccia, L. (2009) Miniature Inhalation Therapy Platform Using Surface Acoustic Wave Microfluidic Atomization. Lab on a Chip, 9, 2184-2193. http://dx.doi.org/10.1039/b903575c
[8]
Rajapaksa, A., Qi, A.S., Yeo, L.Y., Coppel, R. and Friend, J.R. (2014) Enabling Practical Surface Acoustic Wave Nebulizer Drug Delivery via Amplitude Modulation. Lab on a Chip, 14, 1858-1865. http://dx.doi.org/10.1039/C4LC00232F
[9]
Nakamoto, T., Hashimoto, K., Aizawa, T. and Ariyakul, Y. (2014) Multi-Component Olfactory Display with a Saw Atomizer and Micropumps Controlled by a Tablet Pc. Proceedings of the IEEE International Frequency Control Symposium (FCS), Taipei, 19-22 May 2014, 1-4.
[10]
Alvarez, M., Friend, J.R. and Yeo, L.Y. (2008) Rapid Generation of Protein Aerosols and Nanoparticles via Surface Acoustic Wave Atomization. Nanotechnology, 19, 455103.
http://dx.doi.org/10.1088/0957-4484/19/45/455103
[11]
Kim, J.W., Yamagata, Y., Takasaki, M., Lee, B.H., Ohmori, H. and Higuchi, T. (2005) A Device for Fabricating Protein Chips by Using a Surface Acoustic Wave Atomizer and Electrostatic Deposition. Sensors and Actuators B-Chemical, 107, 535-545.
http://dx.doi.org/10.1016/j.snb.2004.11.012
[12]
Qi, A.S., Chan, P., Ho, J., Rajapaksa, A., Friend, J. and Yeo, L.Y. (2011) Template-Free Synthesis and Encapsulation Technique for Layer-by-Layer Polymer Nanocarrier Fabrication. ACS Nano, 5, 9583-9591. http://dx.doi.org/10.1021/nn202833n
[13]
Murochi, N., Sugimoto, M., Matsui, Y. and Kondoh, J. (2007) Deposition of Thin Film Using a Surface Acoustic Wave Device. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 46, 4754-4759.
http://dx.doi.org/10.1143/JJAP.46.4754
[14]
Darmawan, M., Jeon, K., Ju, J.M., Yamagata, Y. and Byun, D. (2014) Deposition of Poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) (Pedot-Pss) Particles Using Standing Surface Acoustic Waves and Electrostatic Deposition Method for the Rapid Fabrication of Transparent Conductive Film. Sensors and Actuators A: Physical, 205, 177-185.
http://dx.doi.org/10.1016/j.sna.2013.11.016
[15]
Winkler, A., Kirchner, A., Bergelt, P., Hühne, R. and Menzel, S. (2016) Thin Film Deposition Based on Microacoustic Sol Atomization (Masa). Journal of Sol-Gel Science and Technology, 78, 26-33. http://dx.doi.org/10.1007/s10971-015-3927-6
[16]
Ho, J., Tan, M.K., Go, D.B., Yeo, L.Y., Friend, J.R. and Chang, H.C. (2011) Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Analytical Chemistry, 83, 3260-3266.
http://dx.doi.org/10.1021/ac200380q
[17]
Huang, Y., Yoon, S.H., Heron, S.R., Masselon, C.D., Edgar, J.S., Turecek, F., et al. (2012) Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 23, 1062-1070.
http://dx.doi.org/10.1007/s13361-012-0352-8
[18]
Monkkonen, L., Edgar, J.S., Winters, D., Heron, S.R., Mackay, C.L., Masselon, C.D., et al. (2016) Screen-Printed Digital Microfluidics Combined with Surface Acoustic Wave Nebulization for Hydrogen-Deuterium Exchange Measurements. Journal of Chromatography A, 1439, 161-166. http://dx.doi.org/10.1016/j.chroma.2015.12.048
[19]
Manor, O., Rezk, A.R., Friend, J.R. and Yeo, L.Y. (2015) Dynamics of Liquid Films Exposed to High-Frequency Surface Vibration. Physical Review E, 91, Article ID: 053015.
http://dx.doi.org/10.1103/physreve.91.053015
[20]
Altshuler, G. and Manor, O. (2015) Spreading Dynamics of a Partially Wetting Water Film Atop a Mhz Substrate Vibration. Physics of Fluids, 27, Article ID: 102103.
http://dx.doi.org/10.1063/1.4932086
[21]
Winkler, A., Menzel, S.B. and Schmidt, H. (2009) Saw-Grade SiO2 for Advanced Microfluidic Devices. Proceedings of the SPIE, 7362, Article ID: 73621Q.
[22]
Mie, G. (1908) Beitrage Zur Optik Trüber Medien, Speziell Kolloidaler Metallosungen. Annalen der Physik, 330, 377-445. http://dx.doi.org/10.1002/andp.19083300302
[23]
Brünig, R. (2011) Modellierung Von Akustischen Dickenscherschwingern Im Frequenz- bereich. PhD Thesis, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden.
[24]
Segur, J.B. and Oberstar, H.E. (1951) Viscosity of Glycerol and Its Aqueous Solutions. Industrial & Engineering Chemistry, 43, 2117-2120. http://dx.doi.org/10.1021/ie50501a040
[25]
Schulz, A.K. (1954) über Die Aus Ultraschallversuchen Und Dielektrischen Messungen Ermittelte Relaxationszeit Und Ihre Abhangigkeit Von Der Viskositat. Zeitschrift für Naturforschung A, 9, 944-950. http://dx.doi.org/10.1515/zna-1954-1106
[26]
Winkler, A., Harazim, S.M., Menzel, S.B. and Schmidt, H. (2015) Saw-Based Fluid Atomization Using Mass-Producible Chip Devices. Lab on a Chip, 15, 3793-3799.
http://dx.doi.org/10.1039/C5LC00756A
[27]
Hashimoto, K. and Nakamoto, T. (2015) Stabilization of Saw Atomizer for a Wearable Olfactory Display. IEEE International Ultrasonics Symposium, 1, 121-124.
[28]
Qi, A., Yeo, L., Friend, J. and Ho, J. (2010) The Extraction of Liquid, Protein Molecules and Yeast Cells from Paper through Surface Acoustic Wave Atomization. Lab on a Chip, 10, 470-476. http://dx.doi.org/10.1039/B915833B
[29]
Pilch, M. and Erdman, C. (1987) Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop. International Journal of Multiphase Flow, 13, 741-757.
http://dx.doi.org/10.1016/0301-9322(87)90063-2