All Title Author
Keywords Abstract


Proteomic Analysis through Adventitious Rooting of Pinus radiata Stem Cuttings with Different Rooting Capabilities

DOI: 10.4236/ajps.2016.714174, PP. 1888-1904

Keywords: Pinus radiata, Adventitious Rooting, Protein Accumulation, Aging

Full-Text   Cite this paper   Add to My Lib

Abstract:

In forest production systems, vegetative propagation of elite clones through adventitious rooting is a common practice. In Chile, adventitious rooting is the main methodology for vegetative reproduction of Pinus radiata. However, the capability of produce adventitious roots in gymnosperms decreases with aging. While it is true that some efforts have been made to identify markers or/and regulators of the aging process and adventitious rooting, molecular mechanisms that regulate both processes are scarcely known, especially at protein level. This research evaluated qualitative and quantitative changes in protein accumulation during the adventitious rooting process of P. radiata stem cuttings, with different rooting capabilities. Beside, an analysis of morpho-anatomical changes was performed in stem cuttings with high and low rooting capabilities, during the adventitious rooting process. It was observed that juvenile 1-year-old stem cuttings rooted in a 100%, while aged stem cuttings (3-year-old) presented only a 20% of rooting. According to the results of differential protein accumulation, univariate and multivariate analysis indicated that in total, 114 and 89 proteins were differentially accumulated in juvenile and aged cuttings, respectively. Also, identification of such proteins showed the presence of proteins related to cell wall organization and the presence of a protein related with proper distribution of auxin PIN transporter, both key in the new meristem formation process during adventitious rooting.

References

[1]  Greenwood, M. and Hutchison, K. (1993) Maturation as a Developmental Process. In: Ahuja, M. and Libby, W., Eds., Clonal Forestry I, Springer-Verlag, Berlin Heidelberg, 277.
http://dx.doi.org/10.1007/978-3-642-84175-0_3
[2]  Diaz-Sala, C., Hutchinson, K. and Greenwood, M.G. (1996) Maturation-Related Loss in Rooting Competence by Loblolly Pine Stem Cuttings: The Role of Auxin Transport, Metabolism and Tissue Sensitivity. Physiologia Plantarum, 97, 481-490.
http://dx.doi.org/10.1111/j.1399-3054.1996.tb00507.x
[3]  Day, M.E., Greenwood, M.G. and White, A.S. (2001) Age-Related Changes in Foliar Morphology and Physiology in Red Spruce and Their Influence on Declining Photosynthesis and Productivity with Tree Age. Tree Physiology, 21, 1195-1204.
http://dx.doi.org/10.1093/treephys/21.16.1195
[4]  Diego, L., Berdasco, M., Fraga, M., Canal, M.J., Rodríguez, R. and Castresana, C. (2004) A Pinus radiata AAA-ATPase, the Expression of Which Increases with Tree Ageing. Journal of Experimental Botany, 55, 1597-1599.
http://dx.doi.org/10.1093/jxb/erh171
[5]  Browne, R., Davidson, C., Steeves, T. and Dunstan, D. (1997) Effects of Ortet Age on Adventitious Rooting of Jack Pine (Pinus banksiana) Long-Shoot Cuttings. Canadian Journal of Forest Research, 27, 91-96.
http://dx.doi.org/10.1139/x96-160
[6]  Ballester, A., San-José, M.C., Vidal, N. and Vieitez, A. (1999) Anatomical and Biochemical Events during in Vitro Rooting of Microcuttings from Juvenile and Mature Phases of Chestnut. Annals of Botany, 83, 619-630.
http://dx.doi.org/10.1006/anbo.1999.0865
[7]  Greenwood, M.S., Cui, X. and Xu, F. (2001) Response to Auxin Changes during Maturation-Related Loss of Adventitious Rooting Competence in Loblolly Pine (Pinus taeda) Stem Cuttings. Physiolgia Plantarum, 111, 373-380.
http://dx.doi.org/10.1034/j.1399-3054.2001.1110315.x
[8]  Swarup, R., Parry, G., Graham, N., Allen, T. and Bennet, M. (2002) Auxin Cross-Talk: Integration of Signaling Pathways to Control Plant Development. Plant Molecular Biology, 49, 411-426.
http://dx.doi.org/10.1023/A:1015250929138
[9]  Valdés, A.E., Fernández, B. and Centeno, M.L. (2004) Hormonal Changes through Maturation and Ageing of Pinus pinea. Plant Physiology and Biochemistry, 42, 335-340.
http://dx.doi.org/10.1016/j.plaphy.2004.02.004
[10]  Pop, T., Pamfil, D. and Bellini, C. (2011) Auxin Control in the Formation of Adventitious Roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 307-316.
[11]  Couée, I., Hummel, I., Sulmon, C., Gouesbet, G. and Amrani, A.E. (2004) Involvement of Polyamines in Root Development. Plant Cell Tissue and Organ Culture, 76, 1-10.
http://dx.doi.org/10.1023/A:1025895731017
[12]  Ragonezi, C., Klimaszewska, K., Rui-Castro, M., Lima, M., de Oliveira, P. and Zavattieri, M.A. (2010) Adventitious Rooting in Conifers: Influence of Physical and Chemical Factors. Trees, 24, 975-992.
http://dx.doi.org/10.1007/s00468-010-0488-8
[13]  Sánchez, C., Vielba, J., Ferro, E., Covelo, G., Solé, A., Abarca, D., De Mier, B. and Díaz-Sala, C. (2007) Two SCARECROW-LIKE Genes Are Induced in Response to Exogenous Auxin in Rooting-Competent Cuttings of Distantly Related Forest Species. Tree Physiology, 27, 1459-1470.
http://dx.doi.org/10.1093/treephys/27.10.1459
[14]  Konishi, M. and Sugiyama, M. (2006) A Novel Plant-Specific Family Gene, ROOT PRIMORDIUM DEFECTIVE 1, Is Required for the Maintenance of Active Cell Proliferation. Plant Physiology, 140, 591-602.
http://dx.doi.org/10.1104/pp.105.074724
[15]  Solé, A., Sánchez, C., Vielba, J., Valladares, S., Abarca, D. and Díaz-Sala, C. (2008) Characterization and Expression of a Pinus radiata Ortholog to Arabidopsis SHORT-ROOT Gene. Tree Physiology, 28, 1629-1639.
http://dx.doi.org/10.1093/treephys/28.11.1629
[16]  Brinker, M., van Zyl, L., Liu, W., Craig, D., Sederoff, R., Clapham, D. and von Arnold, S. (2004) Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta. Plant Physiology, 135, 1526-1539.
http://dx.doi.org/10.1104/pp.103.032235
[17]  Jorrín, J., Maldonado, A. and Castillejo, A. (2007) Plant Proteome Analysis: A 2006 Update. Proteomics, 7, 2947-2962.
http://dx.doi.org/10.1002/pmic.200700135
[18]  Costa, P., Pioneau, C., Bauw, G., Dubos, C., Bahrmann, N., Kremer, A., Frigerio, J.M. and Plomion, C. (1999) Separation and Characterization of Needle and Xylem Maritime Pine Proteins. Electrophoresis, 20, 1098-1108.
http://dx.doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<1098::AID-ELPS1098>3.0.CO;2-Z
[19]  Gion, J.M., Lalanne, C., Le Provost, G., Ferry-Dumazet, H., Paiva, J., Chaumeil, P., Frigerio, J.M., Brach, J., Barré, A., de Daruvar, A., Claverol, S., Bonneu, M., Sommerer, N., Negroni, L. and Plomion, C. (1995) The Proteome of Maritime Pine Wood Forming Tissue. Proteomics, 5, 3731-3751.
http://dx.doi.org/10.1002/pmic.200401197
[20]  Mast, S., Peng, L., Jordan, T.W., Flint, H., Phillips, L., Donaldson, L., Strabala, T. and Wagner, A. (2010) Proteomic Analysis of Membrane Preparations from Developing Pinus radiata Compression Wood. Tree Physiology, 30, 1456-1468.
http://dx.doi.org/10.1093/treephys/tpq084
[21]  Echevarría-Zomeno, S., Ariza, D., Jorge, I., Lenz, C., Del Campo, A., Jorrín, J. and Navarro, R. (2009) Changes in Protein Profile of Quecus Ilex Leaves in Response to Drought Stress and Recovery. Plant Physiology, 166, 233-245.
http://dx.doi.org/10.1016/j.jplph.2008.05.008
[22]  Blonder, C., Majcherczyk, A., Kües, U. and Polle, A. (2007) Early Drought-Induced Changes to the Needle Proteome of Norway Spruce. Tree Physiology, 27, 1423-1431.
http://dx.doi.org/10.1093/treephys/27.10.1423
[23]  Xiao, X., Yang, F., Zhang, S., Korpelainen, H. and Li, C. (2009) Physiological and Proteomic Responses of Two Contrasting Populus cathayana Populations to Drought Stress. Physiologia Plantarum, 136, 150-168.
http://dx.doi.org/10.1111/j.1399-3054.2009.01222.x
[24]  Sorin, C., Negroni, L., Balliau, T., Corti, H., Jacquemot, M.P., Davanture, M., Sandberg, G., Zivy, M. and Bellini, C. (1996) Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development. Plant Physiology, 140, 349-364.
http://dx.doi.org/10.1104/pp.105.067868
[25]  Li, M. and Leung, D.W.M. (2000) Protein Changes Associated with Adventitious Root Formation in Hypocotyls of Pinus radiata. Biologia Plantarum, 44, 33-39.
http://dx.doi.org/10.1023/A:1017910018880
[26]  Chang, I.F., Chen, P.J., Shen, C.H., Hsieh, T.J., Huang, B.L., Kuo, C.I., Chen, H.A., Yeh, K.W. and Huang, L.C. (2010) Proteomic Profiling of Proteins Associated with the Rejuvenation of Sequoia sempervirens (D. Don) Endl. Proteome Science, 8, 64-80.
http://dx.doi.org/10.1186/1477-5956-8-64
[27]  Valledor, L., Jorrín, J., Rodríguez, J., Lenz, C., Meijón, M., Rodríguez, R. and Canal, M.J. (2010) Combined Transcriptomic and Proteomic Analysis Identifies Differentially Expressed Pathways Associated to Pinus radiata Needle Maturation. Journal of Proteome Research, 9, 3954-3979.
http://dx.doi.org/10.1021/pr1001669
[28]  Chich, J., David, O., Villers, F. and Schaeffer, B. (2007) Statistics for Proteomics: Experimental Design and 2-DE Differential Analysis. Journal of Chromatography B, 849, 261-272.
http://dx.doi.org/10.1016/j.jchromb.2006.09.033
[29]  Kim, Y.K. and Yi, G.S. (2008) Sequential KNN Imputation Method. CRAN R Project, Version 1.0.1.
http://cran.at.r-project.org/src/contrib/Archive/SeqKnn/
[30]  Gonzalez, I., Le Cao, K.A., Monget, P., Coquery, J., Yao, F. and Liquet, B. (2012) MixOmics: Omics Data Integration. Project R, Package Version 4.0-1.
http://CRAN.R-project.org/package=mixOmics
[31]  Chong, I.G. and Jun, C.H. (2005) Performance of Some Variable Selection Methods When Multicollinearity Is Present. Chemometrics and Intelligent Laboratory Systems, 78, 103-112.
http://dx.doi.org/10.1016/j.chemolab.2004.12.011
[32]  Schevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass Spectrometric Sequencing 23 of Proteins Silver-Stained Polyacrilamide Gels. Analytical Chemistry, 68, 850-858.
http://dx.doi.org/10.1021/ac950914h
[33]  Diaz-Sala, C., Hutchinson, K. and Greenwood, M. (1996) Maturation-Related Loss in Rooting Competence by Loblolly Pine Stem Cuttings: The Role of Auxin Transport, Metabolism and Tissue Sensitivity. Physiologia Plantarum, 97, 481-490.
http://dx.doi.org/10.1111/j.1399-3054.1996.tb00507.x
[34]  Browne, R., Davidson, C., Steeves, T. and Dunstan, D. (1997) Effects of Ortet Age on Adventitious Rooting of Jack Pine (Pinus banksiana) Long-Shoot Cuttings. Canadian Journal of Forest Research, 27, 91-96.
http://dx.doi.org/10.1139/x96-160
[35]  Wu, S.C., Gyorgyey, J. and Dudits, D. (1989) Polyadenylated H3 Histone Transcripts and H3 Histone Variants in Alfalfa. Nucleic Acid Research, 17, 3057-3063.
http://dx.doi.org/10.1093/nar/17.8.3057
[36]  Medford, J.I., Elmer, J.S. and Klee, H.J. (1991) Molecular Cloning and Characterization of Genes Expressed in Shoot Apical Meristems. Plant Cell, 3, 359-370.
http://dx.doi.org/10.1105/tpc.3.4.359
[37]  Atanassova, R., Chaubet, N. and Gigot, C. (1992) A 126 bp Fragment of Plant Histone Gene Promoter Confers Preferential Expression in Meristems of Transgenic Arabidopsis. Plant Journal, 2, 291-300.
[38]  Horvath, D., Chao, W. and Anderson, J. (2002) Molecular Analysis of Signals Controlling Dormancy and Growth in Underground Adventitious Buds of Leafy Spurge (Euphorbia esula L.). Plant Physiology, 128, 1439-1446.
http://dx.doi.org/10.1104/pp.010885
[39]  Horvath, D., Schaffer, R., West, M. and Wisman, E. (2003) Arabidopsis Microarrays Identify Conserved and Differentially Expressed Genes Involved in Shoot Growth and Development from Distantly Related Plant Species. The Plant Journal, 34, 125-134.
http://dx.doi.org/10.1046/j.1365-313X.2003.01706.x
[40]  Galway, M.E., Heckman, J.W. and Schiefelbein, J.W. (1996) Growth and Ultrastructure of Arabidopsis Root Hairs: The RHD3 Mutation Alters Vacuole Enlargement and Tip Growth. Planta, 201, 209-218.
http://dx.doi.org/10.1007/BF01007706
[41]  Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K. and Dolan, L. (2008) Local Positive Feedback Regulation Determines Cell Shape in Root Hairs. Science, 319, 1241-1243.
http://dx.doi.org/10.1126/science.1152505
[42]  Hu, Y., Zhong, R., Morrison, H. and Ye, Z.H. (2003) The Arabidopsis RHD3 Gene Is Required for Cell Biosynthesis and Actin Organization. Planta, 217, 912-921.
http://dx.doi.org/10.1007/s00425-003-1067-7
[43]  Jones, M.A., Raymond, M.J. and Smirnoff, N. (2006) Analysis of the Root Hair Morphogenesis Transcriptome Reveals the Molecular Identity of Six Genes with Roles in Root Hair Development in Arabidopsis. Plant Journal, 45, 83-100.
http://dx.doi.org/10.1111/j.1365-313X.2005.02609.x
[44]  Hayashi, S., Ishii, T., Matsunaga, T., Tominaga, R., Kuromori, T., Wada, T., Shinozaki, K. and Hirayama, T. (2008) The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and Its Homologs Play Important Roles in Cell Wall Organization. Plant Cell Physiology, 49, 1522-1535.
http://dx.doi.org/10.1093/pcp/pcn120
[45]  Cheng, Y., Zhou, W., Sheery, N.I., Peters, C., Li, M., Wang, X. and Huang, J. (2011) Characterization of the Arabidopsis Glycerophosphodiester Phosphodiesterase (GDPD) Family Reveals a Role of the Plastid-Localized AtGDPD1 in Maintaining Cellular Phosphate Homeostasis under Phosphate Starvation. Plant Journal, 66, 781-795.
http://dx.doi.org/10.1111/j.1365-313X.2011.04538.x
[46]  Fotin, A., Cheng, Y., Grigorieff, N., Harrison, S.C., Kirchhausen, T. and Waltz, T. (2004) Molecular Model for a Complete Clathrin Lattice from Electron Cryomicroscopy. Nature, 432, 573-579.
http://dx.doi.org/10.1038/nature03079
[47]  McMahon, H.T. and Boucrot, E. (2011) Molecular Mechanism and Physiological Functions of Clathrin-Mediated Endocytosis. Nature Reviews Molecular Cell Biology, 12, 517-533.
http://dx.doi.org/10.1038/nrm3151
[48]  Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.G., Wu, M.J., Perrot-Rechenmann, C., Friml, J., Jones, A.M. and Yang, Z. (2010) Cell Surface- and Rho GTPase-Based Auxin Signaling Controls Cellular Interdigitation in Arabidopsis. Cell, 143, 99-110.
http://dx.doi.org/10.1016/j.cell.2010.09.003
[49]  Kitakura, S., Vanneste, S., Robert, S., Lofke, C., Teichmann, T., Tanaka, H. and Friml, J. (2011) Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis. Plant Cell, 23, 1920-1931.
http://dx.doi.org/10.1105/tpc.111.083030
[50]  Wang, C., Yan, X., Chan, Q., Jiang, N., Fu, W., Ma, B., Liu, J., Li, C., Bednarek, S. and Pan, J. (2013) Clathrin Light Chains Regulates Clathrin-Madiated Trafficking, Auxin Signaling, and Development in Arabidopsis. Plant Cell, 25, 499-516.
http://dx.doi.org/10.1105/tpc.112.108373
[51]  Paciorek, T., Zazímalová, E., Ruthardt, N., Patrásek, J., Stierhof, Y.D., Kleine-Vehn, J., Morris, D.A., Emans, N., Júrgens, G., Geldner, N. and Friml, J. (2005) Auxin Inhibits Endocytosis and Promotes Its Own Efflux from Cells. Nature, 435, 1251-1256.
http://dx.doi.org/10.1038/nature03633
[52]  Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Covanová, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek S.Y., Jones, A.M., Luschnig, C., Anient, F., Zazímalová, E. and Friml, J. (2010) ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis. Cell, 143, 111-121.
http://dx.doi.org/10.1016/j.cell.2010.09.027
[53]  De Klerk, G.J., Krieken, W.V.D. and Jong, J. (1999) The Formation of Adventitious Roots: New Concepts, New Possibilities. In Vitro Cellular and Developmental Biology, 35, 189-199.
http://dx.doi.org/10.1007/s11627-999-0076-z
[54]  Fogaca, C.M. and Fett-Neto, A. (2005) Role of Auxin and Its Modulators in the Adventitious Rooting of Eucalyptus Species Differing in Recalcitrance. Plant Growth Regulators, 45, 1-10.
http://dx.doi.org/10.1007/s10725-004-6547-7
[55]  Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, S., Kwon, Y.M. and Lee, I. (2000) The Acamous-Like 20 MADS Domain Protein Ifitegrates Floral Inductive Pathways in Arabidopsis. Genes and Development, 14, 2366-2376.
http://dx.doi.org/10.1101/gad.813600
[56]  Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, E. (2000) B and C Floral Organs Identity Functions Requiere SEPALLATA MADS-Box Genes. Nature, 405, 200-203.
http://dx.doi.org/10.1038/35012103
[57]  Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.J., Burgeff, C., Ditta, G.S., Vergara-Silva, F. and Yanofsky, M.F. (2000) MADS-Box Gene Evolution beyond Flowers: Expression in Pollen, Endosperm, Guard Cells Roots and Trichomes. Plant Journal, 24, 457-466.
http://dx.doi.org/10.1046/j.1365-313x.2000.00891.x
[58]  Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1997) Diverse Roles of MADS-Box Genes in Arabidopsis Development. Plant Cell, 7, 1259-1269.
http://dx.doi.org/10.1105/tpc.7.8.1259
[59]  Burgeff, C., Liljegren, S.J., Tapiz-López, R., Yanofsky, M.F. and Alvarez-Buylla, E. (2002) MADS-Box Gene Expression in Lateral Root Primordial, Meristems and Differentiated Tissues of Arabidopsis Thaliana Roots. Planta, 214, 365-372.
http://dx.doi.org/10.1007/s004250100637

Full-Text

comments powered by Disqus