All Title Author
Keywords Abstract


Headwaters Deforestation for Cattle Pastures in the Andes of Colombia and Its Implications for Soils Properties and Hydrological Dynamic

DOI: 10.4236/ojf.2016.65027, PP. 337-347

Keywords: Forest Influences, Deforestation, Soil Compaction, Headwaters

Full-Text   Cite this paper   Add to My Lib

Abstract:

Deforestation of headwater in the Andes of Colombia is a historical process that has its origins in pre-Hispanic communities and in nineteenth and twentieth centuries, intensified by settlers and farmers. These lands have been intended mainly to pasture cattle. Soil compaction, caused by the trampling of cattle, was evaluated in soils derived from volcanic ash (Andisols), with reference to values found for variables in undisturbed natural forests in the same region. The compared parameters were bulk density (Db), total porosity (α), soil resistance to penetration (Rp) and pore size distribution, analyzed by water retention curves (WRC). The grazed soils had significant differences with respect to the natural forest reference values: Db was 53.7% higher, α was reduced by 11.0% and Rp in the first 7.5 cm of the top soil was more than double, with an average increase of 275.2 to 527.2 kPa. The analysis indicated that compacted soils had relatively uniform reduction in distribution of macro, meso and micropores. It was concluded that deforestation followed by pasture land destination in steep headwaters generates significant compaction processes that can affect the infiltration, percolation and soil water storage, which would have important hydrological implications: augmentation of surface runoff and soil erosion, decreased the base flow and increased direct runoff. For this reasons, it is considered that forest restoration of headwaters is important for the maintenance of hydrological functions of large river systems.

References

[1]  Alaoui, A., Lipiec, J., & Gerke, H. H. (2011). A Review of the Changes in the Soil Pore System Due to Soil Deformation: A Hydrodynamic Perspective. Soil & Tillage Research, 115-116, 1-15.
http://dx.doi.org/10.1016/j.still.2011.06.002
[2]  Alegre, J., & Lara, P. (1991). Efecto de los animales en pastoreo sobre las propiedades físicas de suelos de la región tropical húmeda del Perú. Pasturas Tropicales, 13, 18-23.
[3]  Chaichi, M., Saravi, M., & Malekin, A. (2005). Effects of Livestock Trampling on Soil Physical Properties and Vegetation Cover (Case Study: Lar Rangeland, Iran). International Journal of Agriculture & Biology, 7, 904-908.
[4]  Dorner, J., Dec, D., Feest, E., Vásquez, N., & Díaz, M. (2012). Dynamics of Soil Structure and Pore Functions of a Volcanic Ash Soil under Tillage. Soil & Tillage Research, 125, 52-60.
http://dx.doi.org/10.1016/j.still.2012.05.019
[5]  Gómez, K. (2011). Incidencia de la compactación ocasionada por el tractor en las propiedades físicas en un Andisol (104 p). Tesis Magister en Ingeniería Agrícola, Sede Bogotá: Universidad Nacional de Colombia, Facultad de Ingeniería.
[6]  Hamza, M. A., & Anderson, W. K. (2005). Soil Compaction in Cropping Systems. A Review of the Nature, Causes and Possible Solutions. Soil & Tillage Research, 82, 121-145.
http://dx.doi.org/10.1016/j.still.2004.08.009
[7]  Herbin, T., Hennessy, D., Richards, K. G., Piwowarczyk, A., Murphy, J.J., &d Holden, N. M. (2011). The effects of dairy cow weight on selected soil physical properties indicative of compaction. Soil Use and Management, 27, 36-44.
http://dx.doi.org/10.1111/j.1475-2743.2010.00309.x
[8]  Hincapié, E. (2011). Estudio y Modelación del Movimiento del Agua en Suelos Volcánicos de Ladera (228 p). Tesis Doctoral, Sede Palmira: Universidad Nacional de Colombia.
[9]  Jiménez, C., Rosas, G., & Falla, R. (2012). Efecto de la ganadería en las propiedades físicas del suelo de lomerío en el Centro de Investigaciones Amazónicas Macagual. Ingenierías & Amazonia, 5, 42-50.
[10]  Leij, F. J., Ghezzehei, T., & Or, D. (2002). Modeling the Dynamics of the Pore-Size Distribution. Soil & Tillage Research, 64, 61-78.
http://dx.doi.org/10.1016/S0167-1987(01)00257-4
[11]  Nanzyo, M. (2002). Unique Properties of Ash Volcanic Soils. Global Environmental Research, 6, 99-112.
[12]  Pinzón, A., & Amézquita, E. (1991). Compactación de suelos por el pisoteo de animales en pastoreo en el piedemonte amazónico de Colombia. PasturasTropicales, 13, 21-26.
[13]  Reichardt, K., & Timm, L. C. (2004). Solo, Planta e Atmosfera. Conceitos, Processos e Aplicações (478 p). São Paulo: Editora Manole.
[14]  Seki, K. (2007). SWRC Fit—A Nonlinear Fitting Program with a Water Retention Curve for Soils Having Unimodal and Bimodal Pore Structure. Hydrology and Earth Systems. Science Discussions, 4, 407-437.
[15]  Shoji, S., Nanzyo, M., & Dahlgren, R. A. (1993). Volcanic Ash Soils: Genesis, Properties and Utilization. Developments in Soil Science 21 (288 p). Amsterdam: Elsevier.
[16]  SSS (Soil Science Society of America) (2008). Glossary of Soil Sciences Terms (88 p). United States of America.
[17]  Taboada, M. A., & Lavado, R. S. (1988). Grazing Effects of the Bulk Density in a Natraquoll of the Flooding Pampa of Argentina. Journal of Range Management, 41, 500-503.
http://dx.doi.org/10.2307/3899526
[18]  Tobón, C., Bruijnzeel, L. A., Fruman, K. F. A., & Calvo-Alvarado, J. C. (2010). Changes in Soil Physical Properties after Conversion of Tropical Montane Cloud Forest to Pasture in Northern Costa Rica. In L. A. Bruijnzeel, F. N. Scatena, & L. S. Hamilton (Eds.), Tropical Montane Cloud Forests: Science for Conservation and Management (pp. 502-515). Cambridge: Cambridge University Press.
[19]  Van Genuchten, M. (1980). A Closed-Form Equation for Predict in the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of American Journal, 44, 892-898.
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
[20]  Van Genuchten, M., Leij, F., & Yates, S. (1991). The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils (93 p). Robert S. Kerr Environmental Research Laboratory, Office of Research and Development US Environmental Protection Agency, IAG-DW12933934.
[21]  Vaz, C. M. P., Manieri, J. M., De Maria, I., & van Genuchten, M. (2013). Scaling the Dependency of Soil Penetration Resistance on Water Content and Bulk Density of Different Soils. Soil Science Society of America Journal, 77, 1488-1495.
http://dx.doi.org/10.2136/sssaj2013.01.0016
[22]  Vzzotto, V. R., Marchezan, E., & Sagabinazzi, T. (2000). Efeito do pisoteio bovino em algumas propriedades físicas do solo de várzea. Ciência Rural, 30, 965-969.
http://dx.doi.org/10.1590/S0103-84782000000600007
[23]  Wolkowski, R., & Lowery, B. (2008). Soil Compaction: Causes, Concerns and Cures (8 p). University of Wisconsin Extension A3367.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal