全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Bisphenol A on Testosterone Levels and Sexual Behaviors of Male Mice

DOI: 10.4236/asm.2016.64006, PP. 41-49

Keywords: Bisphenol A, Testosterone, Sexual Behavior, Mice

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: To evaluate the effects of bisphenol A (BPA) on testosterone levels and sexual behaviors of male mice. Methods: Forty 12-week-old male mice, 22 - 25 g, were randomly allocated into four equal groups (n = 10 per group): the control group and three BPA exposure groups including low concentration group (10 mg/kg), middle concentration group (50 mg/kg) and high concentration group (100 mg/kg). Each mouse received BPA intraperitoneally injected for 21 consecutive days. Sexual behaviors and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of BPA. Furthermore, we also observed the weights of sexual organs of each group, including testis, epididymis and seminal vesicle. Results: The mount latency in the high concentration group, the intromission latency in the middle and the high concentration group were 11.64 ± 2.67 min, 20.28 ± 3.40 min and 20.13 ± 2.06 min respectively. All of them were longer than the control group (all P < 0.05). The mount frequency, intromission frequency and copulatory efficacy in the high concentration group were 0.52 ± 0.15 numbers/min, 0.37 ± 0.12 numbers/min and 0.40 ± 0.03, which were all statistically lower than the control group (all P < 0.05). The average testis weights in the low, middle and high concentration group were 0.198 ± 0.032 g, 0.203 ± 0.037g and 0.183 ± 0.032 g, and the relative testis weight in the high concentration group was 0.637 ± 0.106. All of these data were lower than the control group (P < 0.05, P < 0.05, P < 0.01 and P < 0.05, respectively). The epididymis weight and the relative epididymis weight, the weight of seminal vesicle and the relative weight of seminal vesicle were 0.069 ± 0.010 g, 0.242 ± 0.040, 0.219 ± 0.042 g and 0.760 ± 0.143, and all of them were lower than the control group (all P < 0.05). The serum testosterone levels in the high concentration group, the intratesticular testosterone levels in the middle and the high concentration group were 7.88 ± 1.62 ng/ml, 75.5 ± 7.18 ng/g and 73.00 ± 9.57 ng/g, which were all lower than the control group (all P < 0.05). Conclusions: BPA can decline the testosterone levels in mice and inhibit their sexual behaviors.

References

[1]  Wilcox, A.J. and Bonde, J.P. (2013) On Environmental Threats to Male Infertility. Asian Journal of Andrology, 15, 199-200.
http://dx.doi.org/10.1038/aja.2012.153
[2]  Vandenberg, L.N., Colborn, T., Hayes, T.B., et al. (2012) Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 33, 378-455.
http://dx.doi.org/10.1210/er.2011-1050
[3]  Kasper-Sonnenberg, M., Koch, H.M., Wittsiepe, J., Brüning, T. and Wilhelm, M. (2014) Phthalate Metabolites and Bisphenol A in Urines from German School-Aged Children: Results of the Duisburg Birth Cohort and Bochum Cohort Studies. International Journal of Hygiene and Environmental Health, 217, 830-838.
http://dx.doi.org/10.1016/j.ijheh.2014.06.001
[4]  Shankar, A., Teppala, S. and Sabanayagam, C. (2012) Bisphenol A and Peripheral Arterial Disease: Results from the NHANES. Environmental Health Perspectives, 120, 1297-1300.
http://dx.doi.org/10.1289/ehp.1104114
[5]  Li, M., Bi, Y., Qi, L., et al. (2012) Exposure to Bisphenol A Is Associated with Low-Grade Albuminuria in Chinese Adults. Kidney International, 81, 1131-1139.
http://dx.doi.org/10.1038/ki.2012.6
[6]  Holladay, S.D., Xiao, S., Diao, H., et al. (2010) Perinatal Bisphenol A Exposure in C57B6/ 129svj Male Mice: Potential Altered Cytokine/Chemokine Production in Adulthood. International Journal of Environmental Research and Public Health, 7, 2845-2852.
http://dx.doi.org/10.3390/ijerph7072845
[7]  Manfo, F.P., Jubendradass, R., Nantia, E.A., Moundipa, P.F. and Mathur, P.P. (2014) Adverse Effects of Bisphenol A on Male Reproductive Function. Reviews of Environmental Contamination and Toxicology, 228, 57-82.
http://dx.doi.org/10.1007/978-3-319-01619-1_3
[8]  Zang, Z.J., Tang, H.F., Tuo, Y., et al. (2015) Effects of Velvet Antler Polypeptide on Sexual Behavior and Testosterone Synthesis in Aging Male Mice. Asian Journal of Andrology.
[9]  Moriyama, K., Tagami, T., Akamizu, T., et al. (2002) Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. The Journal of Clinical Endocrinology & Metabolism, 87, 5185-5190.
http://dx.doi.org/10.1210/jc.2002-020209
[10]  Braun, J.M., Yolton, K., Dietrich, K.N., et al. (2009) Prenatal Bisphenol A Exposure and Early Childhood Behavior. Environmental Health Perspectives, 117, 1945-1952.
http://dx.doi.org/10.1289/ehp.0900979
[11]  Braun, J.M., Kalkbrenner, A.E., Calafat, A.M., et al. (2011) Impact of Early-Life Bisphenol A Exposure on Behavior and Executive Function in Children. Pediatrics, 128, 873-882.
http://dx.doi.org/10.1542/peds.2011-1335
[12]  Olea-Herrero, N., Arenas, M.I., Munóz-Moreno, C., et al. (2014) Bisphenol-A Induces Podocytopathy with Proteinuria in Mice. Journal of Cellular Physiology, 229, 2057-2066.
http://dx.doi.org/10.1002/jcp.24665
[13]  Fujimoto, V.Y., Kim, D., Vom, S.F.S., Lamb, J.D., Taylor, J.A. and Bloom, M.S. (2011) Serum Unconjugated Bisphenol A Concentrations in Women May Adversely Influence Oocyte Quality during in Vitro Fertilization. Fertility and Sterility, 95, 1816-1819.
http://dx.doi.org/10.1016/j.fertnstert.2010.11.008
[14]  Knez, J., Kranvogl, R., Breznik, B.P., Voncina, E. and Vlaisavljevic, V. (2014) Are Urinary Bisphenol A Levels in Men Related to Semen Quality and Embryo Development after Medically Assisted Reproduction. Fertility and Sterility, 101, 215-221.e5.
http://dx.doi.org/10.1016/j.fertnstert.2013.09.030
[15]  Dobrzyńska, R.J. (2013) Genotoxicity and Reproductive Toxicity of Bisphenol A and X- Ray/Bisphenol A Combination in Male Mice. Drug and Chemical Toxicology, 36, 19-26.
http://dx.doi.org/10.3109/01480545.2011.644561
[16]  De Flora, S., Micale, R.T., La Maestra, S., et al. (2011) Upregulation of Clusterin in Prostate and DNA Damage in Spermatozoa from Bisphenol A-Treated Rats and Formation of DNA Adducts in Cultured Human Prostatic Cells. Toxicological Sciences, 122, 45-51.
http://dx.doi.org/10.1093/toxsci/kfr096
[17]  Clark, J.T., Kalra, S.P. and Kalra, P.S. (1987) Effects of a Selective Alpha1-Adrenoceptor Agonist, Methoxamine, on Sexual Behavior and Penile Reflexes. Physiology & Behavior, 40, 747-753.
http://dx.doi.org/10.1016/0031-9384(87)90278-2
[18]  Benelli, A., Bertolini, A., Zoli, M., et al. (2002) Pharmacological Manipulation of Brain Galaninergic System and Sexual Behavior in Male Mice. Psychopharmacology (Berl), 160, 325- 330.
http://dx.doi.org/10.1007/s00213-001-0992-z
[19]  Corona, G., Isidori, A.M., Buvat, J., et al. (2014) Testosterone Supplementation and Sexual Function: A Meta-Analysis Study. The Journal of Sexual Medicine, 11, 1577-1592.
http://dx.doi.org/10.1111/jsm.12536
[20]  Clark, J.T., Smith, E.R. and Davidson, J.M. (1985) Testosterone Is Not Required for the Enhancement of Sexual Motivation by Yohimbine. Physiology & Behavior, 35, 517-521.
http://dx.doi.org/10.1016/0031-9384(85)90133-7
[21]  Sharpe, R.M., Donachie, K. and Cooper, I. (1988) Re-Evaluation of the Intratesticular Level of Testosterone Required for Quantitative Maintenance of Spermatogenesis in the Rat. Journal of Endocrinology, 117, 19-26.
http://dx.doi.org/10.1677/joe.0.1170019
[22]  Zirkin, B.R., Santulli, R., Awoniyi, C.A. and Ewing, L.L. (1989) Maintenance of Advanced Spermatogenic Cells in the Adult Rat Testis: Quantitative Relationship to Testosterone Concentration within the Testis. Endocrinology, 124, 3043-3049.
http://dx.doi.org/10.1210/endo-124-6-3043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133