All Title Author
Keywords Abstract


Sand Waves Generation: A Numerical Investigation of the Infiernillo Channel in the Gulf of California

DOI: 10.4236/ojms.2016.63035, PP. 412-422

Keywords: Sand Waves, Tidal Hydrodynamics, Bed Load, Sediment Transport

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of the coastal geometry on sand bed forms generation has been investigated for a tidal dominated area. Different hypothetical geometries of coastal channels with flat bottoms and unlimited sediment availability were exposed to strong oscillatory tidal currents to simulate the interaction of hydrodynamics and the bedload sediment transport. The hypothetical geometries stand for the idealization of the principal geographic features of the Infiernillo Channel, a coastal area of the Gulf of California where sandbanks and sand waves have been observed. A depth integrated hydrodynamic-numerical model and a parameterized formula to estimate the bedload sediment transport were applied coupled with a sediment conservation equation to determine the sea bottom morphodynamics. Model predictions in the Infiernillo Channel were compared to available satellite imagery. This investigation demonstrates that a vertical integrated numerical model is able to reproduce the development of incipient sand waves that exist in the Infiernillo Channel. Incipient sandbanks and shoals were also simulated. Sand waves with wavelengths of about 200 m were calculated on the same locations where sand waves actually exist. A crucial finding of this research was to show that the geometry of a shallow water basin and the presence of tidal velocity gradients associated with abrupt changes in the coastline alignment were critical in determining the sand-bed pattern generation. We demonstrate that a vertical variation of tidal currents is not necessary to generate sand waves.

References

[1]  Besio G., Blondeaux, P., Brocchini, V. and Vittori, G. (2003) Migrating Sand waves. Ocean Dynamics, 53, 232-238.
http://dx.doi.org/10.1007/s10236-003-0043-x
[2]  Belderson, R.H., Johnson, M.A. and Kenyon, N.H. (1982) Offshore Tidal Sands. In: Stride, A.H., Ed., Offshore Tidal Sands, Processes and Deposit, Chapman Hall, London, 27-57.
[3]  Terwindt, J.H.J. (1971) Sand Waves in the Southern Bight of the Northern Sea. Marine Geology, 10, 51-67.
http://dx.doi.org/10.1016/0025-3227(71)90076-4
[4]  Hulscher, S.J.M.H. (1996) Tidal-Induced Large-Scale Regular Bed Form Patterns in a Three-Dimensional Shallow Water Model. Journal of Geophysical Research: Oceans, 101, 20727-20744.
http://dx.doi.org/10.1029/96JC01662
[5]  Off, T. (1963) Rythmic Linear Sand Bodies Caused by Tidal Currents. AAPG Bulletin, 47, 324-341.
[6]  McCave, I.N. (1971) Sand Waves in the North Sea off the coast of Holland. Marine Geology, 10, 199-225.
http://dx.doi.org/10.1016/0025-3227(71)90063-6
[7]  Huntley, D.A., Huthnance, J.M., Collins, M.B., Liu, C.L., Nicholls, R.J. and Hewitson, C. (1993) Hydrodynamics and Sediment Dynamics of North Sea Sand Waves and Sand Banks. Philosophical Transactions of the Royal Society London, 343, 461-474.
http://dx.doi.org/10.1098/rsta.1993.0059
[8]  Gerkema, T. (1998) A Note on the Effect of Finite Stokes-Layer Thickness in a Morphodynamic Stability Problem. In: Dronkers, J. and Scheffers, M., Eds., Proceedings of 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, Balkema, 387-395.
[9]  Engelund, F. (1970) Instability of Erodible Beds. Journal of Fluid Mechanics, 42, 225-244.
http://dx.doi.org/10.1017/S0022112070001210
[10]  Blondeaux, P. and Vittori, G. (1994) Wall Imperfections as a Triggering Mechanism for Stokes-Layer Transition. Journal of Fluid Mechanics, 264, 107-135.
http://dx.doi.org/10.1017/S0022112094000601
[11]  Hulscher, S.J.M.H., De Swart, H.E. and De Vriend, H.J. (1993) The Generation of Offshore Tidal Sand Banks and Sand Waves. Continental Shelf Research, 13, 1183-1204.
http://dx.doi.org/10.1016/0278-4343(93)90048-3
[12]  Huthnance, J. (1982) On One Mechanism Forming Linear Sand Banks. Estuarine, Coastal and Shelf Science, 14, 79-99.
http://dx.doi.org/10.1016/S0302-3524(82)80068-6
[13]  Luque, D., Robles, A., Bravo, L.C., Nava, A., Rivera, M., López, A., Barnett, R., Morales, C. and Morales D. (2008) Monitoreo ambiental del Canal del Infiernillo, Territorio Comcáac (Seri). Modelo participativo comunitario basado en el conocimiento tradicional. Golfo de California.1ra Bienal del Programa de Ordenamiento Ecológico Marino del Golfo de California. La Paz, B.C.
[14]  Merifield, P.M., Marzolf, J.E. and Lamar, D.L. (1970) Marine Sand Waves in El Infiernillo Channel, Gulf of California, Final Report for the Office of Naval Research. Washington DC. Contract No N0014-69-C-0210. Task No 388093.
[15]  Marzolf, J.E. and Merrifield, P.M. (1969) Sand Waves Produced by Tidal Currents in the Gulf of California, Sonora, Mexico. Geological Society of America, Abstracts with Programs for 1969, Pallet 7 (Annual Meeting.), 143-144.
[16]  Torre Cosio, J. and Bourillón, L. (2000) Inventario y monitoreo del canal del Infiernillo para el comanejo de los recursos marinos en el territorio Seri, Golfo de California. Conservation Internacional, México, A.C. Informe Final SNIB-CONABIO Proyecto No L179, México DF.
[17]  Carbajal, N. and Backhaus, J.O. (1998) Simulation of Tides, Residual Flow and Energy Budget in the Gulf of California. Oceanologica Acta, 21, 429-446.
http://dx.doi.org/10.1016/S0399-1784(98)80028-5
[18]  Montano-Ley, Y., Peraza-Vizcarra, R. and Paez-Osuna, F. (2007) The Tidal Hydrodynamics Modeling of the Topolobampo Coastal Lagoon System and the Implications for Pollutant Dispersion. Environmental Pollution, 147, 282-290.
http://dx.doi.org/10.1016/j.envpol.2006.07.007
[19]  Montano-Ley, Y., Carbajal, N. and Paez-Osuna, F. (2014) Bed Load Transport of Sediments and Morphodynamics in the Topolobampo Coastal Lagoon System, Mexico. Journal of Coastal Conservation, 18, 55-67.
http://dx.doi.org/10.1007/s11852-013-0295-7
[20]  Montano-Ley, Y., Carbajal, N. and Páez Osuna, F. (2015) Sediment Dynamics in a Complex Coastal Lagoon System of the Gulf of California. Journal of Coastal Conservation, 19, 295-306.
http://dx.doi.org/10.1007/s11852-015-0391-y
[21]  Carbajal, N. (1993) Modelling of the Circulation in the Gulf of California. Berichte aus dem Zentrum fur Klimaund Meeresforschung. Reihe B: Ozeanograph, 3, 1-186.
[22]  Lancin, M. (1985) Geomorfología y génesis de las flechas litorales del canal del Infiernillo, Estado de Sonora. Universidad Nacional Autónoma de México. Instituto de Geología. Revista, 6, 52-72.
[23]  Schuttelaars, H.M. and De Swart, H.E. (1996) An Idealized Long Term Morpho-Dynamic Model of a Tidal Embayment. European Journal of Mechanics, 15, 55-80.
[24]  Van Rijn, L.C. (1993) Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Acqua Publications, Amsterdam.
[25]  Montano-Ley, Y. (2003) Long-Term Effects of the Bed-Load Sediment Transport on the Sea-Bottom Morphodynamics of the Colorado River Delta, México. PhD Thesis, University of Liege, Liege.
[26]  Montano, Y. and Carbajal, N. (2008) Numerical Experiments on the Long-Term Morphodynamics of the Colorado River Delta. Ocean Dynamics, 58, 19-29.
http://dx.doi.org/10.1007/s10236-007-0129-y
[27]  Carbajal, N. and Montano, Y. (1999) Growth Rates and Scales of Sand Banks in the Colorado River Delta. Ciencias Marinas, 25, 525-540.
[28]  Carbajal, N. and Montano, Y. (2001) Comparison between Predicted and Observed Physical Features of Sandbanks. Estuarine Coastal and Shelf Science, 52, 435-443.
http://dx.doi.org/10.1006/ecss.2000.0760
[29]  Dyer, K.R. (1986) Coastal and Estuarine Sediment Dynamics. John Wiley & Sons, Chichester, 342 p.
[30]  Fredsoe, J. and Deigaard, R. (1992) Mechanics of Coastal Sediment Transport. World Scientific.
[31]  De Vriend, H.J., Capobianco, M., Cheshere, T., De Swart, H.E., Latteux, B. and Stive, M.J.F. (1993) Approaches to Long Term Modeling of Coastal Morphology: A Review. Coastal Engineering, 21, 225-269.
http://dx.doi.org/10.1016/0378-3839(93)90051-9
[32]  Komarova, N.L. and Hulscher, S.J.M.H. (2000) Linear Instability Mechanism for Sand Wave Formation. Journal of Fluid Mechanics, 413, 219-246.
http://dx.doi.org/10.1017/S0022112000008429
[33]  Németh, A., Hulscher, S. and van Damme, R.M.J. (2001) Numerical Simulation of Sand Wave Evolution in Shallow Shelf Seas. Coastal Dynamics, 1, 1048-1057.
http://dx.doi.org/10.1061/40566(260)107
[34]  Németh, A.A., Hulsher, S.J.M.H. and Van Damme R.M.J. (2006) Simulating Offshore Sand Waves. Coastal Engineering, 53, 265-275.
http://dx.doi.org/10.1016/j.coastaleng.2005.10.014
[35]  Carbajal, N. and Gavino-Rodrìguez, J.H. (2013) Taylor Problem and Morphodynamics. Estuarine Coastal and Shelf Science, 129, 173-179.
http://dx.doi.org/10.1016/j.ecss.2013.05.017
[36]  Berthot, A. and Pattiaratchi, A. (2006) Mechanisms for the Formation of Headland-Associated Linear Sandbanks. Continental Shelf Research, 26, 987-1004.
http://dx.doi.org/10.1016/j.csr.2006.03.004
[37]  Schramkowski, G.P., Schuttelaars, H.M. and De Swart, H.E. (2002) The Effect of Geometry and Bottom Friction on Local Bed Forms in a Tidal Embayment. Continental Shelf Research, 22, 1821-1833.
http://dx.doi.org/10.1016/S0278-4343(02)00040-7

Full-Text

comments powered by Disqus