All Title Author
Keywords Abstract

Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model

DOI: 10.1371/journal.pntd.0003924

Full-Text   Cite this paper   Add to My Lib


Enterotoxigenic Escherichia coli (ETEC) is an endemic health threat in underdeveloped nations. Despite the significant effort extended to vaccine trials using ETEC colonization factors, these approaches have generally not been especially effective in mediating cross-protective immunity. We used quantitative proteomics to identify 24 proteins that differed in abundance in membrane protein preparations derived from wild-type vs. a type II secretion system mutant of ETEC. We expressed and purified a subset of these proteins and identified nine antigens that generated significant immune responses in mice. Sera from mice immunized with either the MltA-interacting protein MipA, the periplasmic chaperone seventeen kilodalton protein, Skp, or a long-chain fatty acid outer membrane transporter, ETEC_2479, reduced the adherence of multiple ETEC strains differing in colonization factor expression to human intestinal epithelial cells. In intranasal challenge assays of mice, immunization with ETEC_2479 protected 88% of mice from an otherwise lethal challenge with ETEC H10407. Immunization with either Skp or MipA provided an intermediate degree of protection, 68 and 64%, respectively. Protection was significantly correlated with the induction of a secretory immunoglobulin A response. This study has identified several proteins that are conserved among heterologous ETEC strains and may thus potentially improve cross-protective efficacy if incorporated into future vaccine designs.


[1]  Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes and infection / Institut Pasteur. 2009. Epub 2009/11/04.
[2]  Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–22. doi: 10.1016/S0140-6736(13)60844-2. pmid:23680352
[3]  Knutton S, Lloyd DR, Candy DC, McNeish AS. Adhesion of enterotoxigenic Escherichia coli to human small intestinal enterocytes. Infection and immunity. 1985;48(3):824–31. pmid:2860070
[4]  Fleckenstein J, Sheikh A, Qadri F. Novel antigens for enterotoxigenic Escherichia coli vaccines. Expert review of vaccines. 2014;13(5):631–9. doi: 10.1586/14760584.2014.905745. pmid:24702311
[5]  Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clinical microbiology reviews. 1998;11(1):142–201. pmid:9457432
[6]  Gaastra W, Svennerholm AM. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends in microbiology. 1996;4(11):444–52. pmid:8950814 doi: 10.1016/0966-842x(96)10068-8
[7]  Tobias J, Svennerholm AM. Strategies to overexpress enterotoxigenic Escherichia coli (ETEC) colonization factors for the construction of oral whole-cell inactivated ETEC vaccine candidates. Applied microbiology and biotechnology. 2012;93(6):2291–300. doi: 10.1007/s00253-012-3930-6. pmid:22350259
[8]  Savarino SJ, Brown FM, Hall E, Bassily S, Youssef F, Wierzba T, et al. Safety and immunogenicity of an oral, killed enterotoxigenic Escherichia coli-cholera toxin B subunit vaccine in Egyptian adults. The Journal of infectious diseases. 1998;177(3):796–9. pmid:9498468 doi: 10.1086/517812
[9]  Qadri F, Ahmed T, Ahmed F, Bradley Sack R, Sack DA, Svennerholm AM. Safety and immunogenicity of an oral, inactivated enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Bangladeshi children 18–36 months of age. Vaccine. 2003;21(19–20):2394–403. pmid:12744870 doi: 10.1016/s0264-410x(03)00077-x
[10]  Lundgren A, Leach S, Tobias J, Carlin N, Gustafsson B, Jertborn M, et al. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein. Vaccine. 2013;31(8):1163–70. doi: 10.1016/j.vaccine.2012.12.063. pmid:23306362
[11]  Turner AK, Terry TD, Sack DA, Londono-Arcila P, Darsley MJ. Construction and characterization of genetically defined aro omp mutants of enterotoxigenic Escherichia coli and preliminary studies of safety and immunogenicity in humans. Infection and immunity. 2001;69(8):4969–79. pmid:11447175 doi: 10.1128/iai.69.8.4969-4979.2001
[12]  Turner AK, Stephens JC, Beavis JC, Greenwood J, Gewert C, Randall R, et al. Generation and characterization of a live attenuated enterotoxigenic Escherichia coli combination vaccine expressing six colonization factors and heat-labile toxin subunit B. Clinical and vaccine immunology: CVI. 2011;18(12):2128–35. doi: 10.1128/CVI.05345-11. pmid:21994355
[13]  Harro C, Sack D, Bourgeois AL, Walker R, DeNearing B, Feller A, et al. A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults. Clinical and vaccine immunology: CVI. 2011;18(12):2118–27. doi: 10.1128/CVI.05342-11. pmid:21994354
[14]  Darsley MJ, Chakraborty S, DeNearing B, Sack DA, Feller A, Buchwaldt C, et al. The oral, live attenuated enterotoxigenic Escherichia coli vaccine ACE527 reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease. Clinical and vaccine immunology: CVI. 2012;19(12):1921–31. doi: 10.1128/CVI.00364-12. pmid:23035175
[15]  Barry EM, Wang J, Wu T, Davis T, Levine MM. Immunogenicity of multivalent Shigella-ETEC candidate vaccine strains in a guinea pig model. Vaccine. 2006;24(18):3727–34. pmid:16169130 doi: 10.1016/j.vaccine.2005.07.013
[16]  Koprowski H 2nd, Levine MM, Anderson RJ, Losonsky G, Pizza M, Barry EM. Attenuated Shigella flexneri 2a vaccine strain CVD 1204 expressing colonization factor antigen I and mutant heat-labile enterotoxin of enterotoxigenic Escherichia coli. Infection and immunity. 2000;68(9):4884–92. pmid:10948101 doi: 10.1128/iai.68.9.4884-4892.2000
[17]  Barry EM, Altboum Z, Losonsky G, Levine MM. Immune responses elicited against multiple enterotoxigenic Escherichia coli fimbriae and mutant LT expressed in attenuated Shigella vaccine strains. Vaccine. 2003;21(5–6):333–40. pmid:12531629 doi: 10.1016/s0264-410x(02)00611-4
[18]  Cersini A, Martino MC, Martini I, Rossi G, Bernardini ML. Analysis of virulence and inflammatory potential of Shigella flexneri purine biosynthesis mutants. Infection and immunity. 2003;71(12):7002–13. pmid:14638790 doi: 10.1128/iai.71.12.7002-7013.2003
[19]  Altboum Z, Barry EM, Losonsky G, Galen JE, Levine MM. Attenuated Shigella flexneri 2a Delta guaBA strain CVD 1204 expressing enterotoxigenic Escherichia coli (ETEC) CS2 and CS3 fimbriae as a live mucosal vaccine against Shigella and ETEC infection. Infection and immunity. 2001;69(5):3150–8. pmid:11292735 doi: 10.1128/iai.69.5.3150-3158.2001
[20]  Ranallo RT, Fonseka CP, Cassels F, Srinivasan J, Venkatesan MM. Construction and characterization of bivalent Shigella flexneri 2a vaccine strains SC608(pCFAI) and SC608(pCFAI/LTB) that express antigens from enterotoxigenic Escherichia coli. Infection and immunity. 2005;73(1):258–67. pmid:15618162 doi: 10.1128/iai.73.1.258-267.2005
[21]  Roy K, Hamilton D, Allen KP, Randolph MP, Fleckenstein JM. The EtpA exoprotein of enterotoxigenic Escherichia coli promotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infection and immunity. 2008;76(5):2106–12. doi: 10.1128/IAI.01304-07. pmid:18285493
[22]  Roy K, Kansal R, Bartels SR, Hamilton DJ, Shaaban S, Fleckenstein JM. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli. The Journal of biological chemistry. 2011;286(34):29771–9. doi: 10.1074/jbc.M111.251546. pmid:21757737
[23]  Kumar P, Luo Q, Vickers TJ, Sheikh A, Lewis WG, Fleckenstein JM. EatA, an immunogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infection and immunity. 2014;82(2):500–8. doi: 10.1128/IAI.01078-13. pmid:24478066
[24]  Luo Q, Kumar P, Vickers TJ, Sheikh A, Lewis WG, Rasko DA, et al. Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infection and immunity. 2014;82(2):509–21. doi: 10.1128/IAI.01106-13. pmid:24478067
[25]  Kansal R, Rasko DA, Sahl JW, Munson GP, Roy K, Luo Q, et al. Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions. Infection and immunity. 2013;81(1):259–70. doi: 10.1128/IAI.00919-12. pmid:23115039
[26]  Jayappa HG, Goodnow RA, Geary SJ. Role of Escherichia coli type 1 pilus in colonization of porcine ileum and its protective nature as a vaccine antigen in controlling colibacillosis. Infection and immunity. 1985;48(2):350–4. pmid:2577729
[27]  Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol. 2008;190(20):6881–93. Epub 2008/08/05. doi: 10.1128/JB.00619-08. pmid:18676672
[28]  Mora M, Donati C, Medini D, Covacci A, Rappuoli R. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr Opin Microbiol. 2006;9(5):532–6. Epub 2006/08/08. pmid:16890009 doi: 10.1016/j.mib.2006.07.003
[29]  Galperin MY, Koonin EV. Searching for drug targets in microbial genomes. Current opinion in biotechnology. 1999;10(6):571–8. pmid:10600691 doi: 10.1016/s0958-1669(99)00035-x
[30]  Molloy MP, Phadke ND, Chen H, Tyldesley R, Garfin DE, Maddock JR, et al. Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Proteomics. 2002;2(7):899–910. pmid:12124935 doi: 10.1002/1615-9861(200207)2:7<899::aid-prot899>;2-y
[31]  Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science (New York, NY. 2005;309(5731):148–50. doi: 10.1126/science.1109869
[32]  Johnson TL, Abendroth J, Hol WG, Sandkvist M. Type II secretion: from structure to function. FEMS microbiology letters. 2006;255(2):175–86. pmid:16448494 doi: 10.1111/j.1574-6968.2006.00102.x
[33]  Evans DJ Jr., Evans DG. Three characteristics associated with enterotoxigenic Escherichia coli isolated from man. Infection and immunity. 1973;8(3):322–8. Epub 1973/09/01. pmid:4581006
[34]  Dorsey FC, Fischer JF, Fleckenstein JM. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cellular microbiology. 2006;8(9):1516–27. pmid:16922869 doi: 10.1111/j.1462-5822.2006.00736.x
[35]  DuPont HL, Formal SB, Hornick RB, Snyder MJ, Libonati JP, Sheahan DG, et al. Pathogenesis of Escherichia coli diarrhea. The New England journal of medicine. 1971;285(1):1–9. pmid:4996788 doi: 10.1056/nejm197107012850101
[36]  Tacket CO, Reid RH, Boedeker EC, Losonsky G, Nataro JP, Bhagat H, et al. Enteral immunization and challenge of volunteers given enterotoxigenic E. coli CFA/II encapsulated in biodegradable microspheres. Vaccine. 1994;12(14):1270–4. pmid:7856290 doi: 10.1016/s0264-410x(94)80038-2
[37]  Svennerholm AM, Wenneras C, Holmgren J, McConnell MM, Rowe B. Roles of different coli surface antigens of colonization factor antigen II in colonization by and protective immunogenicity of enterotoxigenic Escherichia coli in rabbits. Infection and immunity. 1990;58(2):341–6. pmid:1967593
[38]  Levine MM, Ristaino P, Sack RB, Kaper JB, Orskov F, Orskov I. Colonization factor antigens I and II and type 1 somatic pili in enterotoxigenic Escherichia coli: relation to enterotoxin type. Infection and immunity. 1983;39(2):889–97. pmid:6131869
[39]  Wolf MK, Taylor DN, Boedeker EC, Hyams KC, Maneval DR, Levine MM, et al. Characterization of enterotoxigenic Escherichia coli isolated from U.S. troops deployed to the Middle East. Journal of clinical microbiology. 1993;31(4):851–6. pmid:8463396
[40]  Shaheen HI, Khalil SB, Rao MR, Abu Elyazeed R, Wierzba TF, Peruski LF Jr., et al. Phenotypic profiles of enterotoxigenic Escherichia coli associated with early childhood diarrhea in rural Egypt. Journal of clinical microbiology. 2004;42(12):5588–95. pmid:15583286 doi: 10.1128/jcm.42.12.5588-5595.2004
[41]  Darfeuille-Michaud A, Forestier C, Joly B, Cluzel R. Identification of a nonfimbrial adhesive factor of an enterotoxigenic Escherichia coli strain. Infection and immunity. 1986;52(2):468–75. pmid:3516874
[42]  Heuzenroeder MW, Elliot TR, Thomas CJ, Halter R, Manning PA. A new fimbrial type (PCFO9) on enterotoxigenic Escherichia coli 09:H- LT+ isolated from a case of infant diarrhea in central Australia. FEMS microbiology letters. 1990;54(1–3):55–60. pmid:1969831 doi: 10.1111/j.1574-6968.1990.tb03972.x
[43]  McConnell MM, Chart H, Field AM, Hibberd M, Rowe B. Characterization of a putative colonization factor (PCFO166) of enterotoxigenic Escherichia coli of serogroup O166. Journal of general microbiology. 1989;135(5):1135–44. pmid:2576034 doi: 10.1099/00221287-135-5-1135
[44]  McConnell MM, Hibberd M, Field AM, Chart H, Rowe B. Characterization of a new putative colonization factor (CS17) from a human enterotoxigenic Escherichia coli of serotype O114:H21 which produces only heat-labile enterotoxin. The Journal of infectious diseases. 1990;161(2):343–7. pmid:1967623 doi: 10.1093/infdis/161.2.343
[45]  Viboud GI, Binsztein N, Svennerholm AM. A new fimbrial putative colonization factor, PCFO20, in human enterotoxigenic Escherichia coli. Infection and immunity. 1993;61(12):5190–7. pmid:7901165
[46]  Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(12):6640–5. pmid:10829079 doi: 10.1073/pnas.120163297
[47]  van de Verg LL, Mallett CP, Collins HH, Larsen T, Hammack C, Hale TL. Antibody and cytokine responses in a mouse pulmonary model of Shigella flexneri serotype 2a infection. Infection and immunity. 1995;63(5):1947–54. pmid:7729907
[48]  Turbyfill KR, Hartman AB, Oaks EV. Isolation and characterization of a Shigella flexneri invasin complex subunit vaccine. Infection and immunity. 2000;68(12):6624–32. pmid:11083774 doi: 10.1128/iai.68.12.6624-6632.2000
[49]  Yamagata A, Tainer JA. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. The EMBO journal. 2007;26(3):878–90. pmid:17255937 doi: 10.1038/sj.emboj.7601544
[50]  Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(10):7066–71. pmid:12011463 doi: 10.1073/pnas.092152899
[51]  Sklar JG, Wu T, Kahne D, Silhavy TJ. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes & development. 2007;21(19):2473–84. doi: 10.1101/gad.1581007
[52]  Jarchow S, Luck C, Gorg A, Skerra A. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics. 2008;8(23–24):4987–94. doi: 10.1002/pmic.200800288. pmid:19003857
[53]  Pechine S, Hennequin C, Boursier C, Hoys S, Collignon A. Immunization using GroEL decreases Clostridium difficile intestinal colonization. PloS one. 2013;8(11):e81112. doi: 10.1371/journal.pone.0081112. pmid:24303034
[54]  Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani AH. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine. 2014;32(49):6659–66. doi: 10.1016/j.vaccine.2014.09.013. pmid:25240754
[55]  De Cock H, Schafer U, Potgeter M, Demel R, Muller M, Tommassen J. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. European journal of biochemistry / FEBS. 1999;259(1–2):96–103. pmid:9914480 doi: 10.1046/j.1432-1327.1999.00010.x
[56]  Roy K, Bartels S, Qadri F, Fleckenstein JM. Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infection and immunity. 2010;78(7):3027–35. doi: 10.1128/IAI.00264-10. pmid:20457787
[57]  Yang TC, Ma XC, Liu F, Lin LR, Liu LL, Liu GL, et al. Screening of the Salmonella paratyphi A CMCC 50973 strain outer membrane proteins for the identification of potential vaccine targets. Molecular medicine reports. 2012;5(1):78–83. doi: 10.3892/mmr.2011.587. pmid:21922141
[58]  Kumar GB, Black PN. Linker mutagenesis of a bacterial fatty acid transport protein. Identification of domains with functional importance. J Biol Chem. 1991;266(2):1348–53. pmid:1985953
[59]  Easton DM, Smith A, Gallego SG, Foxwell AR, Cripps AW, Kyd JM. Characterization of a novel porin protein from Moraxella catarrhalis and identification of an immunodominant surface loop. J Bacteriol. 2005;187(18):6528–35. pmid:16159786 doi: 10.1128/jb.187.18.6528-6535.2005
[60]  Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, et al. Outer membrane protein OmpW of Escherichia coli is required for resistance to phagocytosis. Research in microbiology. 2013;164(8):848–55. doi: 10.1016/j.resmic.2013.06.008. pmid:23811183
[61]  Zhong W, Xu W, Wang H, Huang Y, Cao J, Gong Y, et al. Mucosal immunization with caseinolytic protease X elicited cross-protective immunity against pneumococcal infection in mice. Experimental biology and medicine. 2012;237(6):694–702. doi: 10.1258/ebm.2012.011383. pmid:22728705
[62]  Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infection and immunity. 1996;64(1):146–53. pmid:8557332
[63]  Elsinghorst EA, Weitz JA. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein. Infection and immunity. 1994;62(8):3463–71. pmid:8039917
[64]  Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Veterinary immunology and immunopathology. 2013;152(1–2):57–67. doi: 10.1016/j.vetimm.2012.10.001. pmid:23122616
[65]  De Magistris MT. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Advanced drug delivery reviews. 2006;58(1):52–67. pmid:16516335 doi: 10.1016/j.addr.2006.01.002
[66]  Eyles JE, Sharp GJ, Williamson ED, Spiers ID, Alpar HO. Intra nasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Vaccine. 1998;16(7):698–707. pmid:9562689 doi: 10.1016/s0264-410x(97)00249-1
[67]  Boedeker EC. Vaccines for enterotoxigenic Escherichia coli: current status. Current opinion in gastroenterology. 2005;21(1):15–9. pmid:15687879 doi: 10.1097/00001574-199901000-00008


comments powered by Disqus

Contact Us


微信:OALib Journal