All Title Author
Keywords Abstract

Multiplicity of Infection and Disease Severity in Plasmodium vivax

DOI: 10.1371/journal.pntd.0004355

Full-Text   Cite this paper   Add to My Lib


Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity.


[1]  Schneider KA, Escalante AA. A likelihood approach to estimate the number of co-infections. PLoS One. 2014 Jul 2; 9(7):e97899. doi: 10.1371/journal.pone.0097899. pmid:24988302
[2]  Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014; 84:151–208. doi: 10.1016/B978-0-12-800099-1.00003-X. pmid:24480314
[3]  Conway DJ. Molecular epidemiology of malaria. Clin Microbiol Rev. 2007 Jan; 20(1):188–204. pmid:17223628 doi: 10.1128/cmr.00021-06
[4]  Hastings IM. The origins of antimalarial drug resistance. Trends Parasitol. 2004 Nov; 20(11):512–8. pmid:15471702 doi: 10.1016/
[5]  de Roode JC, Pansini R, Cheesman SJ, Helinski ME, Huijben S, Wargo AR, et al. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A. 2005 May 24; 102(21):7624–8. pmid:15894623 doi: 10.1073/pnas.0500078102
[6]  Escalante AA, Smith DL, Kim Y. The dynamics of mutations associated with anti-malarial drug resistance in Plasmodium falciparum. Trends Parasitol. 2009 Dec; 25(12):557–63. doi: 10.1016/ pmid:19864183
[7]  Kim Y, Escalante AA, Schneider KA. A population genetic model for the initial spread of partially resistant malaria parasites under anti-malarial combination therapy and weak intrahost competition. PLoS One. 2014 Jul 9; 9(7):e101601. doi: 10.1371/journal.pone.0101601. pmid:25007207
[8]  Jennison C, Arnott A, Tessier N, Tavul L, Koepfli C, Felger I, et al. Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl Trop Dis. 2015 Apr 15; 9(4):e0003634. doi: 10.1371/journal.pntd.0003634. pmid:25874894
[9]  Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, et al. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology. 2005 Jul; 131(Pt 1):25–35. pmid:16038393 doi: 10.1017/s0031182005007547
[10]  Bereczky S, Liljander A, Rooth I, Faraja L, Granath F, Montgomery SM, et al. Multiclonal asymptomatic Plasmodium falciparum infections predict a reduced risk of malaria disease in a Tanzanian population. Microbes Infect. 2007 Jan; 9(1):103–10. pmid:17194613 doi: 10.1016/j.micinf.2006.10.014
[11]  Chenet SM, Schneider KA, Villegas L, Escalante AA. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J. 2012 Dec 11; 11:412. doi: 10.1186/1475-2875-11-412. pmid:23232077
[12]  Mara SE, Silué KD, Raso G, N'guetta SP, N'goran EK, Tanner M, et al. Genetic diversity of Plasmodium falciparum among school-aged children from the Man region, western C?te d'Ivoire. Malar J. 2013 Nov 15; 12:419. doi: 10.1186/1475-2875-12-419. pmid:24228865
[13]  Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa et al. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am. J Trop Med Hyg. 2015 Sep 2; 93(3 Suppl):79–86. doi: 10.4269/ajtmh.15-0005. pmid:26259945
[14]  Takala SL, Escalante AA, Branch OH, Kariuki S, Biswas S, Chaiyaroj SC, et al. Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: additional complexity and selection and convergence in fragment size polymorphism. Infect Genet Evol. 2006 Sept; 6(5):417–24. pmid:16517218 doi: 10.1016/j.meegid.2006.01.009
[15]  Rice BL, Acosta MM, Pacheco MA, Escalante AA. Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note. Malar J. 2013 Aug 21; 12:288. doi: 10.1186/1475-2875-12-288. pmid:23964962
[16]  de Roode JC, Helinski ME, Anwar MA, Read AF. Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat. 2005 Nov; 166(5):531–42. pmid:16224719 doi: 10.1086/491659
[17]  Abkallo HM, Tangena JA, Tang J, Kobayashi N, Inoue M, Zoungrana A, Colegrave N, Culleton R. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii. PLoS Pathog. 2015 Feb 6; 11(2):e1004628. doi: 10.1371/journal.ppat.1004628. pmid:25658331
[18]  Pinkevych M, Petravic J, Bereczky S, Rooth I, F?rnert A, Davenport MP. Understanding the relationship between Plasmodium falciparum growth rate and multiplicity of infection. J Infect Dis. 2015 Apr 1; 211(7):1121–7. doi: 10.1093/infdis/jiu561. pmid:25301957
[19]  Ranjit MR, Das A, Das BP, Das BN, Dash BP, Chhotray GP. Distribution of Plasmodium falciparum genotypes in clinically mild and severe malaria cases in Orissa, India. Trans R Soc Trop Med Hyg. 2005 May; 99(5):389–95. pmid:15780346 doi: 10.1016/j.trstmh.2004.09.010
[20]  Rout R, Mohapatra BN, Kar SK, Ranjit M. Genetic complexity and transmissibility of Plasmodium falciparum parasites causing severe malaria in central-east coast India. Trop Biomed. 2009 Aug; 26(2):165–72. pmid:19901903
[21]  Kiwuwa MS, Ribacke U, Moll K, Byarugaba J, Lundblom K, F?rnert A, et al. Genetic diversity of Plasmodium falciparum infections in mild and severe malaria of children from Kampala, Uganda. Parasitol Res. 2013 Apr; 112(4):1691–700. doi: 10.1007/s00436-013-3325-3. pmid:23408340
[22]  Conway DJ, Greenwood BM, McBride JS. The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology. 1991 Aug; 103 Pt 1:1–6. pmid:1682870 doi: 10.1017/s0031182000059217
[23]  Kun JF, Schmidt-Ott RJ, Lehman LG, Lell B, Luckner D, Greve B, et al. Merozoite surface antigen 1 and 2 genotypes and rosetting of Plasmodium falciparum in severe and mild malaria in Lambaréné, Gabon. Trans R Soc Trop Med Hyg. 1998 Jan-Feb; 92(1):110–4. pmid:9692171 doi: 10.1016/s0035-9203(98)90979-8
[24]  Nielsen MA, Staalsoe T, Kurtzhals JA, Goka BQ, Dodoo D, Alifrangis M, et al. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol. 2002 Apr 1; 168(7):3444–50. pmid:11907103 doi: 10.4049/jimmunol.168.7.3444
[25]  A-Elbasit IE, ElGhazali G, A-Elgadir TM, Hamad AA, Babiker HA, Elbashir MI, et al. Allelic polymorphism of MSP2 gene in severe P. falciparum malaria in an area of low and seasonal transmission. Parasitol Res. 2007 Dec; 102(1):29–34. pmid:17768641 doi: 10.1007/s00436-007-0716-3
[26]  Durand R, Ariey F, Cojean S, Fontanet A, Ranaivo L, Ranarivelo LA, et al. Analysis of circulating populations of Plasmodium falciparum in mild and severe malaria in two different epidemiological patterns in Madagascar. Trop Med Int Health. 2008 Nov; 13(11):1392–9. doi: 10.1111/j.1365-3156.2008.02156.x. pmid:18803610
[27]  Amodu OK, Oyedeji SI, Ntoumi F, Orimadegun AE, Gbadegesin RA, Olumese PE, et al. Complexity of the msp2 locus and the severity of childhood malaria, in south-western Nigeria. Ann Trop Med Parasitol. 2008 Mar; 102(2):95–102. doi: 10.1179/136485908X252340. pmid:18318931
[28]  Arevalo-Herrera M, Qui?ones ML, Guerra C, Céspedes N, Giron S, Ahumada M, et al. Malaria in selected non-Amazonian countries of Latin America. Acta Trop. 2012 Mar; 121(3):303–14. doi: 10.1016/j.actatropica.2011.06.008. pmid:21741349
[29]  Arévalo-Herrera M, Lopez-Perez M, Medina L, Moreno A, Gutierrez JB, Herrera S. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia. Malar J. 2015 Apr 11; 14(1):154. doi: 10.1186/s12936-015-0678-3
[30]  Chowell G, Munayco CV, Escalante AA, McKenzie FE. The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006. Malar J. 2009 Jun 27; 8:142. doi: 10.1186/1475-2875-8-142. pmid:19558695
[31]  Herrera S, Vallejo AF, Quintero JP, Arévalo-Herrera M, Cancino M, Ferro S. Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia. Malar J. 2014 Mar 10; 13:87. doi: 10.1186/1475-2875-13-87. pmid:24612585
[32]  WHO. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg. 2000 Apr; 94 Suppl 1:S1–90. pmid:11103309
[33]  MinSalud. Ministerio de la Protección Social. Colombia. Guía de atención clínica de Malaria. Ministerio de la Protección Social, Colombia, Bogotá 2010:132.
[34]  Karunaweera ND, Ferreira MU, Munasinghe A, Barnwell JW, Collins WE, King CL, et al. Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene. 2008 Feb 29; 410(1):105–12. doi: 10.1016/j.gene.2007.11.022. pmid:18226474
[35]  Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, et al. Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol. 2006 May; 23(5):1016–8. pmid:16507919 doi: 10.1093/molbev/msj116
[36]  Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999 Aug; 119 (Pt 2):113–25. pmid:10466118 doi: 10.1017/s0031182099004552
[37]  Eliades N-G, Eliades DG. HAPLOTYPE ANALYSIS: Software for analysis of haplotype data. Distributed by the authors. Forest Genetics and Forest Tree Breeding, Georg-August University Goettingen, Germany. 2009. .
[38]  Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec; 70(12):3321–3. pmid:4519626 doi: 10.1073/pnas.70.12.3321
[39]  Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000 Jun; 155(2):945–59. pmid:10835412
[40]  Dent AE, Bridgett M. vonHoldt. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. Jun 2012; 4(2):359–361. doi: 10.1007/s12686-011-9548-7
[41]  Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007 Jul 15; 23(14):1801–6. pmid:17485429 doi: 10.1093/bioinformatics/btm233
[42]  Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x
[43]  Francisco AP, Bugalho M, Ramirez M, Carri?o JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009 May 18; 10:152. doi: 10.1186/1471-2105-10-152. pmid:19450271
[44]  Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carri?o JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012 May 8; 13:87. doi: 10.1186/1471-2105-13-87. pmid:22568821
[45]  Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis. 2007 Apr 15; 195(8):1218–26. pmid:17357061 doi: 10.1086/512685
[46]  Koepfli C, Timinao L, Antao T, Barry AE, Siba P, Mueller I, et al. A large Plasmodium vivax reservoir and little population structure in the South Pacific. PLoS One. 2013 Jun 18; 8(6):e66041. pmid:23823758 doi: 10.1371/journal.pone.0066041
[47]  Vallejo AF, Martínez NL, González IJ, Arévalo-Herrera M, Herrera S. Evaluation of the loop mediated isothermal DNA amplification (LAMP) kit for malaria diagnosis in P. vivax endemic settings of Colombia. PLoS Negl Trop Dis. 2015 Jan 8; 9(1):e3453. doi: 10.1371/journal.pntd.0003453. pmid:25569550
[48]  Engelbrecht F, T?gel E, Beck HP, Enwezor F, Oettli A, Felger I. Analysis of Plasmodium falciparum infections in a village community in Northern Nigeria: determination of msp2 genotypes and parasite-specific IgG responses. Acta Trop. 2000 Jan 5; 74(1):63–71. pmid:10643909 doi: 10.1016/s0001-706x(99)00044-3
[49]  Bendixen M, Msangeni HA, Pedersen BV, Shayo D, B?dker R. Diversity of Plasmodium falciparum populations and complexity of infections in relation to transmission intensity and host age: a study from the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg. 2001 Mar-Apr; 95(2):143–8. pmid:11355544 doi: 10.1016/s0035-9203(01)90140-3
[50]  Müller DA, Charlwood JD, Felger I, Ferreira C, do Rosario V, Smith T. Prospective risk of morbidity in relation to multiplicity of infection with Plasmodium falciparum in S?o Tomé. Acta Trop. 2001 Feb 23; 78(2):155–62. pmid:11230825 doi: 10.1016/s0001-706x(01)00067-5
[51]  Mayor A, Saute F, Aponte JJ, Almeda J, Gómez-Olivé FX, Dgedge M, et al. Plasmodium falciparum multiple infections in Mozambique, its relation to other malariological indices and to prospective risk of malaria morbidity. Trop Med Int Health. 2003 Jan; 8(1):3–11. pmid:12535242 doi: 10.1046/j.1365-3156.2003.00968.x
[52]  Robert F, Ntoumi F, Angel G, Candito D, Rogier C, Fandeur T, et al. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Senegal. Trans R Soc Trop Med Hyg. 1996 Nov-Dec; 90(6):704–11. pmid:9015525 doi: 10.1016/s0035-9203(96)90446-0
[53]  Tanabe K, Zollner G, Vaughan JA, Sattabongkot J, Khuntirat B, Honma H, Mita T, Tsuboi T, Coleman R. Plasmodium falciparum: genetic diversity and complexity of infections in an isolated village in western Thailand. Parasitol Int. 2015 Jun; 64(3):260–6. doi: 10.1016/j.parint.2013.09.011. pmid:24060540
[54]  Frank SA. Host-symbiont conflict over the mixing of symbiotic lineages. Proc Biol Sci. 1996 Mar 22; 263(1368):339–44. pmid:8920255 doi: 10.1098/rspb.1996.0052
[55]  Galvani AP. Epidemiology meets evolutionary ecology, Trends Ecol and Evol. 2003 Mar; 18(3):132–139. doi: 10.1016/s0169-5347(02)00050-2
[56]  Leggett HC, Brown SP, Reece SE. War and peace: social interactions in infections. Philos Trans R Soc Lond B Biol Sci. 2014 Mar 31; 369(1642):20130365. doi: 10.1098/rstb.2013.0365. pmid:24686936
[57]  Arévalo-Herrera M, Roggero MA, Gonzalez JM, Vergara J, Corradin G, López JA, Herrera S. Mapping and comparison of the B-cell epitopes recognized on the Plasmodium vivax circumsporozoite protein by immune Colombians and immunized Aotus monkeys. Ann Trop Med Parasitol. 1998 Jul; 92(5):539–51. pmid:9797827 doi: 10.1080/00034989859230
[58]  Valderrama-Aguirre A, Quintero G, Gómez A, Castellanos A, Pérez Y, Méndez F, Arévalo-Herrera M, Herrera S. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am J Trop Med Hyg. 2005 Nov; 73(5 Suppl):16–24. pmid:16291762


comments powered by Disqus