The aim of this article is to introduce the notion of Hom-Lie H-pseudo-superalgebras for any Hopf
algebra H. This class of algebras is
a natural generalization of the Hom-Lie pseudo-algebras as well as a special
case of the Hom-Lie superalgebras. We present some construction theorems of
Hom-Lie H-pseudo-superalgebras,
reformulate the equivalent definition of Hom-Lie H-pseudo-super-algebras, and consider the cohomology theory of Hom-Lie H-pseudo-superalgebras with coefficients
in arbitrary Hom-modules as a generalization of Kac’s result.
References
[1]
Bakalov, B., Kac, V.G. and Voronov, A.A. (1999) Cohomology of Conformal Algebras. Communications in Mathematical Physics, 200, 561-598. http://dx.doi.org/10.1007/s002200050541
[2]
D’Andrea, A. and Kac, V.G. (1998) Structure Theory of Finite Conformal Algebras. Selecta Mathematica, 4, 377-418.
Kac, V.G. (1998) Vertex Algebras for Beginners. 2nd Edition, American Mathematical Society, Providence. http://dx.doi.org/10.1090/ulect/010
[5]
Kac, V.G. (1997) The Idea of Locality. In: Doebner, H.-D., et al., Eds., Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, World Scientific, Singapore, 16-32.
[6]
Kac, V.G. Formal Distribution Algebras and Conformal Algebras. XII-th International Congress in Mathematical Physics (ICMP’97), Brisbane, 8 April 1999, 80-97.
[7]
Yuan, L.M. (2014) Hom Gel’fand-Dorfman Bialgebras and Hom-Lie Conformal Algebra. Journal of Mathematical Physics, 55, Article ID: 043507. http://dx.doi.org/10.1063/1.4870870
[8]
Yuan, L.M. (2016) A Lie Conformal Algebra of Block Type. arXiv, No. 1601.07388.
[9]
Borcherds, R.E. (1986) Vertex Algebras, Kac-Moody Algebras, and the Monster. Proceedings of the National Academy of Sciences of the United States of America, 83, 3068-3071. http://dx.doi.org/10.1073/pnas.83.10.3068
[10]
Bakalov, B., D’Andrea, A. and Kac, V.G. (2001) Theory of Finite Pseudoalgebras. Advances in Mathematics, 162, 1-140. http://dx.doi.org/10.1006/aima.2001.1993
[11]
Bakalov, B., D’Andrea, A. and Kac, V.G. (2006) Irreducible Modules over Finite Simple Lie Pseudoalgebras. I. Primitive Pseudoalgebras of Type W and S. Advances in Mathematics, 204, 278-346. http://dx.doi.org/10.1016/j.aim.2005.07.003
[12]
Bakalov, B., D'Andrea, A. and Kac, V.G. (2013) Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K. Advances in Mathematics, 232, 188-237. http://dx.doi.org/10.1016/j.aim.2012.09.012
[13]
Boyallian, C. and Liberati, J.I. (2012) On Pseudo-Bialgebras. Journal of Algebra, 372, 1-34. http://dx.doi.org/10.1016/j.jalgebra.2012.08.009
[14]
Sun, Q.X. (2012) Generalization of H-Pseudoalgebraic Structures. Journal of Mathematical Physics, 53, Article ID: 012105. http://dx.doi.org/10.1063/1.3665708
[15]
Hartwig, J., Larsson, D. and Silvestrov, S. (2006) Deformations of Lie Algebras Using σ-Derivations. Journal of Algebra, 295, 314-361. http://dx.doi.org/10.1016/j.jalgebra.2005.07.036
[16]
Larsson, D. and Silvestrov, S. (2007) Quasi-Hom-Lie Algebras, Central Extensions and 2-Cocycle-Like Identities. Journal of Algebra, 288, 321-344. http://dx.doi.org/10.1016/j.jalgebra.2005.02.032
[17]
Yau, D. (2009) Hom-Algebras and Homology. Journal of Lie Theory, 19, 409-421.
[18]
Yau, D. (2008) Enveloping Algebras of Hom-Lie Algebras. Journal of Generalized Lie Theory and Applications, 2, 95-108.
[19]
Yau, D. (2010) Hom-Bialgebras and Comodule Algebras. International Electronic Journal of Algebra, 8, 45-64.
[20]
Cheng, Y.S. and Yang, H.Y. (2010) Low-Dimensional Cohomology of q-deformed Heisenberg-Virasoro Algebra of Hom-Type. Frontiers of Mathematics in China, 5, 607-622. http://dx.doi.org/10.1007/s11464-010-0063-z
[21]
Sheng, Y.H. (2012) Representations of Hom-Lie Algebras. Algebras and Representation Theory, 15, 1081-1098. http://dx.doi.org/10.1007/s10468-011-9280-8
[22]
Sheng, Y.H. and Bai, C.M. (2014) A New Approach to Hom-Lie Bialgebras. Journal of Algebra, 399, 232-250. http://dx.doi.org/10.1016/j.jalgebra.2013.08.046
[23]
Yuan, L.M. (2012) Hom-Lie Color Algebra Structures. Communications in Algebra, 40, 575-592. http://dx.doi.org/10.1080/00927872.2010.533726
[24]
Makhlouf, A. and Silvestrov, S. (2008) Hom-Algebra Structures. Journal of Generalized Lie Theory and Applications, 3, 51-64. http://dx.doi.org/10.4303/jglta/S070206
[25]
Makhlouf, A. and Silvestrov, S. (2009) Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras. In: Silvestrov, S., Paal, E., Abramov, V. and Stolin, A., Eds., Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, 189-206.
[26]
Makhlouf, A. and Silvestrov, S. (2010) Hom-Algebras and Hom-Coalgebras. Journal of Algebra and Its Applications, 9, 553-589. http://dx.doi.org/10.1142/S0219498810004117
[27]
Caenepeel, S. and Goyvaerts, I. (2012) Monoidal Hom-Hopf Algebras. Communications in Algebra, 40, 1933-1950.
[28]
Chen, Y.Y., Wang, Z.W. and Zhang, L.Y. (2013) The FRT-Type Theorem for the Hom-Long Equation. Communications in Algebra, 41, 3931-3948. http://dx.doi.org/10.1080/00927872.2013.781614
Gohr, A. (2010) On Hom-Algebras with Surjective Twisting. Journal of Algebra, 324, 1483-1491. http://dx.doi.org/10.1016/j.jalgebra.2010.05.003
[31]
You, M.M. and Wang, S.H. (2014) Constructing New Braided T-Categories over Monoidal Hom-Hopf Algebras. Journal of Mathematical Physics, 55, 111701. http://dx.doi.org/10.1063/1.4900824
[32]
Zhang, X.H. and Wang, S.H. (2015) Weak Hom-Hopf Algebras and Their (Co)Representations. Journal of Geometry and Physics, 94, 50-71. http://dx.doi.org/10.1016/j.geomphys.2014.11.014
[33]
Ammar, F. and Makhlouf, A. (2010) Hom-Lie Superalgebras and Hom-Lie Admissible Superalgebras. Journal of Algebra, 324, 1513-1528. http://dx.doi.org/10.1016/j.jalgebra.2010.06.014
[34]
Scheunert, M. and Zhang, R.B. (1998) Cohomology of Lie Superalgebras and Their Generalizations. Journal of Mathematical Physics, 39, 5024-5061. http://dx.doi.org/10.1063/1.532508
Bahturin, Y., Mikhalev, D., Zaicev, M. and Petrogradsky, V. (1992) Infinite Dimensional Lie Superalgebras. Walter de Gruyter Publisher, Berlin. http://dx.doi.org/10.1515/9783110851205
[37]
Kassel, C. (1995) Quantum Groups. Graduate Texts in Mathematics. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4612-0783-2