All Title Author
Keywords Abstract

On Hom-Lie Pseudo-Superalgebras

DOI: 10.4236/apm.2016.66029, PP. 420-435

Keywords: Hom-Associative Pseudo-Superalgebra, Hom-Lie Pseudo-Superalgebra, Hom-Lie Conformal Superalgebra, Hom-Annihilation Superalgebra, Cohomology

Full-Text   Cite this paper   Add to My Lib


The aim of this article is to introduce the notion of Hom-Lie H-pseudo-superalgebras for any Hopf algebra H. This class of algebras is a natural generalization of the Hom-Lie pseudo-algebras as well as a special case of the Hom-Lie superalgebras. We present some construction theorems of Hom-Lie H-pseudo-superalgebras, reformulate the equivalent definition of Hom-Lie H-pseudo-super-algebras, and consider the cohomology theory of Hom-Lie H-pseudo-superalgebras with coefficients in arbitrary Hom-modules as a generalization of Kac’s result.


[1]  Bakalov, B., Kac, V.G. and Voronov, A.A. (1999) Cohomology of Conformal Algebras. Communications in Mathematical Physics, 200, 561-598.
[2]  D’Andrea, A. and Kac, V.G. (1998) Structure Theory of Finite Conformal Algebras. Selecta Mathematica, 4, 377-418.
[3]  Kac, V.G. (1977) Lie Superalgebras. Advances in Mathematics, 26, 8-96.
[4]  Kac, V.G. (1998) Vertex Algebras for Beginners. 2nd Edition, American Mathematical Society, Providence.
[5]  Kac, V.G. (1997) The Idea of Locality. In: Doebner, H.-D., et al., Eds., Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, World Scientific, Singapore, 16-32.
[6]  Kac, V.G. Formal Distribution Algebras and Conformal Algebras. XII-th International Congress in Mathematical Physics (ICMP’97), Brisbane, 8 April 1999, 80-97.
[7]  Yuan, L.M. (2014) Hom Gel’fand-Dorfman Bialgebras and Hom-Lie Conformal Algebra. Journal of Mathematical Physics, 55, Article ID: 043507.
[8]  Yuan, L.M. (2016) A Lie Conformal Algebra of Block Type. arXiv, No. 1601.07388.
[9]  Borcherds, R.E. (1986) Vertex Algebras, Kac-Moody Algebras, and the Monster. Proceedings of the National Academy of Sciences of the United States of America, 83, 3068-3071.
[10]  Bakalov, B., D’Andrea, A. and Kac, V.G. (2001) Theory of Finite Pseudoalgebras. Advances in Mathematics, 162, 1-140.
[11]  Bakalov, B., D’Andrea, A. and Kac, V.G. (2006) Irreducible Modules over Finite Simple Lie Pseudoalgebras. I. Primitive Pseudoalgebras of Type W and S. Advances in Mathematics, 204, 278-346.
[12]  Bakalov, B., D'Andrea, A. and Kac, V.G. (2013) Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K. Advances in Mathematics, 232, 188-237.
[13]  Boyallian, C. and Liberati, J.I. (2012) On Pseudo-Bialgebras. Journal of Algebra, 372, 1-34.
[14]  Sun, Q.X. (2012) Generalization of H-Pseudoalgebraic Structures. Journal of Mathematical Physics, 53, Article ID: 012105.
[15]  Hartwig, J., Larsson, D. and Silvestrov, S. (2006) Deformations of Lie Algebras Using σ-Derivations. Journal of Algebra, 295, 314-361.
[16]  Larsson, D. and Silvestrov, S. (2007) Quasi-Hom-Lie Algebras, Central Extensions and 2-Cocycle-Like Identities. Journal of Algebra, 288, 321-344.
[17]  Yau, D. (2009) Hom-Algebras and Homology. Journal of Lie Theory, 19, 409-421.
[18]  Yau, D. (2008) Enveloping Algebras of Hom-Lie Algebras. Journal of Generalized Lie Theory and Applications, 2, 95-108.
[19]  Yau, D. (2010) Hom-Bialgebras and Comodule Algebras. International Electronic Journal of Algebra, 8, 45-64.
[20]  Cheng, Y.S. and Yang, H.Y. (2010) Low-Dimensional Cohomology of q-deformed Heisenberg-Virasoro Algebra of Hom-Type. Frontiers of Mathematics in China, 5, 607-622.
[21]  Sheng, Y.H. (2012) Representations of Hom-Lie Algebras. Algebras and Representation Theory, 15, 1081-1098.
[22]  Sheng, Y.H. and Bai, C.M. (2014) A New Approach to Hom-Lie Bialgebras. Journal of Algebra, 399, 232-250.
[23]  Yuan, L.M. (2012) Hom-Lie Color Algebra Structures. Communications in Algebra, 40, 575-592.
[24]  Makhlouf, A. and Silvestrov, S. (2008) Hom-Algebra Structures. Journal of Generalized Lie Theory and Applications, 3, 51-64.
[25]  Makhlouf, A. and Silvestrov, S. (2009) Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras. In: Silvestrov, S., Paal, E., Abramov, V. and Stolin, A., Eds., Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, 189-206.
[26]  Makhlouf, A. and Silvestrov, S. (2010) Hom-Algebras and Hom-Coalgebras. Journal of Algebra and Its Applications, 9, 553-589.
[27]  Caenepeel, S. and Goyvaerts, I. (2012) Monoidal Hom-Hopf Algebras. Communications in Algebra, 40, 1933-1950.
[28]  Chen, Y.Y., Wang, Z.W. and Zhang, L.Y. (2013) The FRT-Type Theorem for the Hom-Long Equation. Communications in Algebra, 41, 3931-3948.
[29]  Chen, Y.Y., Wang, Z.W. and Zhang, L.Y. (2014) Quasitriangular Hom-Hopf Algebras. Colloquium Mathematicum, 137, 67-88.
[30]  Gohr, A. (2010) On Hom-Algebras with Surjective Twisting. Journal of Algebra, 324, 1483-1491.
[31]  You, M.M. and Wang, S.H. (2014) Constructing New Braided T-Categories over Monoidal Hom-Hopf Algebras. Journal of Mathematical Physics, 55, 111701.
[32]  Zhang, X.H. and Wang, S.H. (2015) Weak Hom-Hopf Algebras and Their (Co)Representations. Journal of Geometry and Physics, 94, 50-71.
[33]  Ammar, F. and Makhlouf, A. (2010) Hom-Lie Superalgebras and Hom-Lie Admissible Superalgebras. Journal of Algebra, 324, 1513-1528.
[34]  Scheunert, M. and Zhang, R.B. (1998) Cohomology of Lie Superalgebras and Their Generalizations. Journal of Mathematical Physics, 39, 5024-5061.
[35]  Sweedler, M.E. (1969) Hopf Algebras. Mathematics Lecture Notes Series. Benjamin, New York.
[36]  Bahturin, Y., Mikhalev, D., Zaicev, M. and Petrogradsky, V. (1992) Infinite Dimensional Lie Superalgebras. Walter de Gruyter Publisher, Berlin.
[37]  Kassel, C. (1995) Quantum Groups. Graduate Texts in Mathematics. Springer-Verlag, New York.


comments powered by Disqus

Contact Us


微信:OALib Journal