All Title Author
Keywords Abstract

Update on the Fungal Biofilm Drug Resistance and Its Alternative Treatment

DOI: 10.4236/jbm.2016.45004, PP. 37-47

Keywords: Aspergillus fumigatus, Candida albicans, Biofilm, Antifungal Resistance, Combination Therapy, Traditional Chinese Medicine

Full-Text   Cite this paper   Add to My Lib


Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) are the two main pathogens in the clinical setting to cause serious, sometimes, lethal fungal infections. Immunocompromised patients fall victims to these fungi, with a mortality rate rising drastically over the past decades. This is in correlation with the fact that conventional antifungals are no longer capable of completely eradicating the disease, or if so, high doses are usually required to do so, leading to eventual resistance to those drugs and severe side effects. High drug resistance is in association with the discovery that these opportunistic pathogens have the ability to develop a multicellular complex, known as biofilm. Biofilms prevent drugs from reaching the fungal cells by sequestering them in their extracellular matrix. Other factors such as extracellular DNA, persister cells or heat shock protein 90 (Hsp90) also play a role in biofilm and contribute to drug recalcitrance. With the discovery of new antifungals lagging behind, scientists focused on other more profitable ways to counteract this phenomenon. Combination of two or more antifungals was found effective but came with serious drawbacks. Natural plant extracts, such as traditional Chinese medicine have also been demonstrated in vitro to possess antimicrobial actions. Great interest was directed towards their use with conventional antifungal agents with a possibility of lowering the necessary concentration required to inhibit the growth of fungi. This review aims in understanding the different factors contributing to clinical drug resistance and evaluating the effect of combination therapy and natural products on those cases difficult to treat.


[1]  Kaur, S. and Singh, S. (2014) Biofilm Formation by Aspergillus fumigatus. Medical Mycology, 52, 2-9.
[2]  Nett, J.E., Crawford, K., Marchillo, K. and Andes, D.R. (2010) Role of Fks1p and Matrix Glucan in Candida Albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene. Antimicrobial Agents and Chemotherapy, 54, 3505-3508.
[3]  Denning, D.W. (1998) Invasive Aspergillosis. Clinical Infectious Diseases, 26, 781-803; quiz 804-805.
[4]  Srinivasan, A., Lopez-Ribot, J.L. and Ramasubramanian, A.K. (2014) Overcoming Antifungal Resistance. Drug Discovery Today: Technologies, 11, 65-71.
[5]  Karthaus, M. (2010) Guideline Based Treatment of Invasive Aspergillosis. Mycoses, 53, 36-43.
[6]  Pierce, C.G., Srinivasan, A., Uppuluri, P., Ramasubramanian, A.K. and Lopez-Ribot, J.L. (2013) Antifungal Therapy with an Emphasis on Biofilms. Current Opinion in Pharmacology, 13, 726-730.
[7]  Ramage, G., Rajendran, R., Gutierrez-Correa, M., Jones, B. and Williams, C. (2011) Aspergillus Biofilms: Clinical and Industrial Significance. FEMS Microbiology Letters, 324, 89-97.
[8]  Ramage, G., Saville, S.P., Thomas, D.P. and Lopez-Ribot, J.L. (2005) Candida Biofilms: An Update. Eukaryotic Cell, 4, 633-638.
[9]  Mowat, E., Williams, C., Jones, B., McChlery, S. and Ramage, G. (2009) The Characteristics of Aspergillus fumigatus Mycetoma Development: Is This a Biofilm? Medical Mycology, 47, S120-S126.
[10]  Ramage, G., Mowat, E., Jones, B., Williams, C. and Lopez-Ribot, J. (2009) Our Current Understanding of Fungal Biofilms. Critical Reviews in Microbiology, 35, 340-355.
[11]  Beauvais, A., Schmidt, C., Guadagnini, S., Roux, P., Perret, E., Henry, C., Paris, S., Mallet, A., Prevost, M.C. and Latge, J.P. (2007) An Extracellular Matrix Glues Together the Aerial-Grown Hyphae of Aspergillus fumigatus. Cellular Microbiology, 9, 1588-1600.
[12]  Reichhardt, C., Ferreira, J.A., Joubert, L.M., Clemons, K.V., Stevens, D.A. and Cegelski, L. (2015) Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy. Eukaryotic Cell, 14, 1064-1072.
[13]  Miller, R.A. and Britigan, B.E. (1997) Role of Oxidants in Microbial Pathophysiology. Clinical Microbiology Reviews, 10, 1-18.
[14]  Banerjee, B., Greenberger, P.A., Fink, J.N. and Kurup, V.P. (1998) Immunological Characterization of Asp f 2, a Major Allergen from Aspergillus fumigatus Associated with Allergic Bronchopulmonary Aspergillosis. Infection and Immunity, 66, 5175-5182.
[15]  Jahn, B., Langfelder, K., Schneider, U., Schindel, C. and Brakhage, A.A. (2002) PKSP-Dependent Reduction of Phagolysosome Fusion and Intracellular Kill of Aspergillus fumigatus Conidia by Human Monocyte-Derived Macrophages. Cellular Microbiology, 4, 793-803.
[16]  Rajendran, R., Williams, C., Lappin, D.F., Millington, O., Martins, M. and Ramage, G. (2013) Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms. Eukaryotic Cell, 12, 420-429.
[17]  Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C. and Mattick, J.S. (2002) Extracellular DNA Required for Bacterial Biofilm Formation. Science, 295, 1487.
[18]  Martins, M., Uppuluri, P., Thomas, D.P., Cleary, I.A., Henriques, M., Lopez-Ribot, J.L. and Oliveira, R. (2010) Presence of Extracellular DNA in the Candida albicans Bio-film Matrix and Its Contribution to Biofilms. Mycopathologia, 169, 323-331.
[19]  Bojsen, R., Regenberg, B., Gresham, D. and Folkesson, A. (2016) A Common Mechanism Involving the TORC1 Pathway Can Lead to Amphotericin B-Persistence in Biofilm and Planktonic Saccharomyces cerevisiae Populations. Scientific Reports, 6, No. 21874.
[20]  LaFleur, M.D., Kumamoto, C.A. and Lewis, K. (2006) Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells. Antimicrobial Agents and Chemotherapy, 50, 3839-3846.
[21]  Mesa-Arango, A.C., Scorzoni, L. and Zaragoza, O. (2012) It Only Takes One to Do Many Jobs: Amphotericin B as Antifungal and Immunomodulatory Drug. Frontiers in Microbiology, 3, Article 286.
[22]  Bink, A., Vandenbosch, D., Coenye, T., Nelis, H., Cammue, B.P. and Thevissen, K. (2011) Superoxide Dismutases Are Involved in Candida albicans Biofilm Persistence against Miconazole. Antimicrobial Agents and Chemotherapy, 55, 4033-4037.
[23]  Martin, D.E., Soulard, A. and Hall, M.N. (2004) TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1. Cell, 119, 969-979.
[24]  Nierman, W.C., Pain, A., Anderson, M.J., Wortman, J.R., Kim, H.S., Arroyo, J., Berriman, M., Abe, K., Archer, D.B., Bermejo, C., Bennett, J., Bowyer, P., Chen, D., Collins, M., Coulsen, R., Davies, R., Dyer, P.S., Farman, M., Fedorova, N., Fedorova, N., Feldblyum, T.V., Fischer, R., Fosker, N., Fraser, A., Garcia, J.L., Garcia, M.J., Goble, A., Goldman, G.H., Gomi, K., Griffith-Jones, S., Gwilliam, R., Haas, B., Haas, H., Harris, D., Horiuchi, H., Huang, J., Humphray, S., Jimenez, J., Keller, N., Khouri, H., Kitamoto, K., Kobayashi, T., Konzack, S., Kulkarni, R., Kumagai, T., Lafon, A., Latge, J.P., Li, W., Lord, A., Lu, C., Majoros, W.H., May, G.S., Miller, B.L., Mohamoud, Y., Molina, M., Monod, M., Mouyna, I., Mulligan, S., Murphy, L., O’Neil, S., Paulsen, I., Penalva, M.A., Pertea, M., Price, C., Pritchard, B.L., Quail, M.A., Rabbinowitsch, E., Rawlins, N., Rajandream, M.A., Reichard, U., Renauld, H., Robson, G.D., Rodriguez de Cordoba, S., Rodriguez-Pena, J.M., Ronning, C.M., Rutter, S., Salzberg, S.L., Sanchez, M., Sanchez-Ferrero, J.C., Saunders, D., Seeger, K., Squares, R., Squares, S., Takeuchi, M., Tekaia, F., Turner, G., Vazquez de Aldana, C.R., Weidman, J., White, O., Woodward, J., Yu, J.H., Fraser, C., Galagan, J.E., Asai, K., Machida, M., Hall, N., Barrell, B. and Denning, D.W. (2005) Genomic Sequence of the Pathogenic and Allergenic Filamentous Fungus Aspergillus fumigatus. Nature, 438, 1151-1156.
[25]  Slaven, J.W., Anderson, M.J., Sanglard, D., Dixon, G.K., Bille, J., Roberts, I.S. and Denning, D.W. (2002) Increased Expression of a Novel Aspergillus fumigatus ABC Transporter Gene, atrF, in the Presence of Itraconazole in an Itraconazole Resistant Clinical Isolate. Fungal Genetics and Biology, 36, 199-206.
[26]  Sanglard, D., Ischer, F., Calabrese, D., Micheli, M. and Bille, J. (1998) Multiple Resistance Mechanisms to Azole Antifungals in Yeast Clinical Isolates. Drug Resistance Updates, 1, 255-265.
[27]  Wakiec, R., Prasad, R., Morschhauser, J., Barchiesi, F., Borowski, E. and Milewski, S. (2007) Voriconazole and Multidrug Resistance in Candida albicans. Mycoses, 50, 109-115.
[28]  Rajendran, R., Mowat, E., McCulloch, E., Lappin, D.F., Jones, B., Lang, S., Majithiya, J.B., Warn, P., Williams, C. and Ramage, G. (2011) Azole Resistance of Aspergillus fumigatus Biofilms Is Partly Associated with Efflux Pump Activity. Antimi-crobial Agents and Chemotherapy, 55, 2092-2097.
[29]  Mukherjee, P.K., Chandra, J., Kuhn, D.M. and Ghannoum, M.A. (2003) Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols. Infection and Immunity, 71, 4333-4340.
[30]  Wandinger, S.K., Richter, K. and Buchner, J. (2008) The Hsp90 Chaperone Machinery. The Journal of Biological Chemistry, 283, 18473-18477.
[31]  Becherelli, M., Tao, J. and Ryder, N.S. (2013) Involvement of Heat Shock Proteins in Candida albicans Biofilm Formation. Journal of Molecular Microbiology and Biotechnology, 23, 396-400.
[32]  Robbins, N., Uppuluri, P., Nett, J., Rajendran, R., Ramage, G., Lopez-Ribot, J.L., Andes, D. and Cowen, L.E. (2011) Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 7, e1002257.
[33]  Zhang, Y.Q., Gamarra, S., Garcia-Effron, G., Park, S., Perlin, D.S. and Rao, R. (2010) Requirement for Ergosterol in V-ATPase Function Underlies Antifungal Activity of Azole Drugs. PLoS Pathogens, 6, e1000939.
[34]  Palacios, D.S., Dailey, I., Siebert, D.M., Wilcock, B.C. and Burke, M.D. (2011) Synthesis-Enabled Functional Group Deletions Reveal Key Underpinnings of Amphotericin B Ion Channel and Antifungal Activities. Proceedings of the National Academy of Sciences of the United States of America, 108, 6733-6738.
[35]  Khot, P.D., Suci, P.A., Miller, R.L., Nelson, R.D. and Tyler, B.J. (2006) A Small Subpopulation of Blastospores in Candida albicans Biofilms Exhibit Resistance to Amphotericin B Associated with Differential Regulation of Ergosterol and Beta-1,6-Glucan Pathway Genes. Antimicrobial Agents and Chemotherapy, 50, 3708-3716.
[36]  Chamilos, G. and Kontoyiannis, D.P. (2005) Update on Antifungal Drug Resistance Mechanisms of Aspergillus fumigatus. Drug Resistance Updates, 8, 344-358.
[37]  Perlin, D.S., Shor, E. and Zhao, Y. (2015) Update on Antifungal Drug Resistance. Current Clinical Microbiology Reports, 2, 84-95.
[38]  Mowat, E., Lang, S., Williams, C., McCulloch, E., Jones, B. and Ramage, G. (2008) Phase-Dependent Antifungal Activity against Aspergillus fumigatus Developing Multicellular Filamentous Biofilms. Journal of Antimicrobial Chemotherapy, 62, 1281-1284.
[39]  Lass-Florl, C., Kofler, G., Kropshofer, G., Hermans, J., Kreczy, A., Dierich, M.P. and Niederwieser, D. (1998) In-Vitro Testing of Susceptibility to Amphotericin B Is a Reliable Predictor of Clinical Outcome in Invasive Aspergillosis. Journal of Antimicrobial Chemotherapy, 42, 497-502.
[40]  Liu, X., Han, Y., Peng, K., Liu, Y., Li, J. and Liu, H. (2011) Effect of Traditional Chinese Medicinal Herbs on Candida spp. from Patients with HIV/AIDS. Advances in Dental Research, 23, 56-60.
[41]  Blaszczyk, T., Krzyzanowska, J. and Lamer-Zarawska, E. (2000) Screening for Antimycotic Properties of 56 Traditional Chinese Drugs. Phytotherapy Research, 14, 210-212.<210::AID-PTR591>3.0.CO;2-7
[42]  Agarwal, S.K., Singh, S.S., Verma, S. and Kumar, S. (2000) Antifungal Activity of Anthraquinone Derivatives from Rheum emodi. Journal of Ethnopharmacology, 72, 43-46.
[43]  Seneviratne, C.J., Wong, R.W. and Samaranayake, L.P. (2008) Potent Anti-Microbial Activity of Traditional Chinese Medicine Herbs against Candida Species. Mycoses, 51, 30-34.
[44]  Yang, F., Ding, S., Liu, W., Liu, J., Zhang, W., Zhao, Q. and Ma, X. (2015) Antifungal Activity of 40 TCMs Used Individually and in Combination for Treatment of Superficial Fungal Infections. Journal of Ethnopharmacology, 163, 88-93.
[45]  Orhan, I.E., Guner, E., Ozcelik, B., Senol, F.S., Caglar, S.S., Emecen, G., Kocak, O. and Sener, B. (2012) Assessment of Antimicrobial, Insecticidal and Genotoxic Effects of Melia azedarach L. (Chinaberry) Naturalized in Anatolia. International Journal of Food Sciences and Nutrition, 63, 560-565.
[46]  Ponnusamy, K., Petchiammal, C., Mohankumar, R. and Hopper, W. (2010) In Vitro Antifungal Activity of Indirubin Isolated from a South Indian Ethnomedicinal Plant Wrightia tinctoria R. Br. Journal of Ethnopharmacology, 132, 349-354.
[47]  Vollekova, A., Kost’alova, D., Kettmann, V. and Toth, J. (2003) Antifungal Activity of Mahonia aquifolium Extract and Its Major Protoberberine Alkaloids. Phytotherapy Research, 17, 834-837.
[48]  Park, K.S., Kang, K.C., Kim, J.H., Adams, D.J., Johng, T.N. and Paik, Y.K. (1999) Differential Inhibitory Effects of Protoberberines on Sterol and Chitin Biosyntheses in Candida albicans. ChemotherJournal of Antimicrobial Chemotherapy, 43, 667-674.
[49]  Yan, Z., Hua, H., Xu, Y. and Samaranayake, L.P. (2012) Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 106583.
[50]  Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A.E. (1999) Compromised Disease Resistance in Saponin-Deficient Plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 12923-12928.
[51]  Zhao, X., Gao, J., Song, C., Fang, Q., Wang, N., Zhao, T., Liu, D. and Zhou, Y. (2012) Fungal Sensitivity to and Enzymatic Deglycosylation of Ginsenosides. Phytochemistry, 78, 65-71.
[52]  Jiang, M., Huang, X., Shen, L., Zhou, F., Tu, W. and Shi, W. (2011) Antifungal Sensitivity of Two Chinese Traditional Drugs against Candida in Vitro. Chinese Journal of Mycology, 6, 26-30.
[53]  Sung, W.S. and Lee, D.G. (2008) In Vitro Candidacidal Action of Korean Red Ginseng Saponins against Candida albicans. Biological and Pharmaceutical Bulletin, 31, 139-142.
[54]  Hatipoglu, N. and Hatipoglu, H. (2013) Combination Antifungal Therapy for Invasive Fungal Infections in Children and Adults. Expert Review of Anti-Infective Therapy, 11, 523-535.
[55]  Larsen, R.A., Bauer, M., Thomas, A.M. and Graybill, J.R. (2004) Amphotericin B and Fluconazole, a Potent Combination Therapy for Cryptococcal Meningitis. Antimicrobial Agents and Chemotherapy, 48, 985-991.
[56]  Groll, A.H., Gea-Banacloche, J.C., Glasmacher, A., Just-Nuebling, G., Maschmeyer, G. and Walsh, T.J. (2003) Clinical Pharmacology of Antifungal Compounds. Infectious Disease Clinics of North America, 17, 159-191.
[57]  Moore, C.B., Sayers, N., Mosquera, J., Slaven, J. and Denning, D.W. (2000) Antifungal Drug Resistance in Aspergillus. Journal of Infection, 41, 203-220.
[58]  Steinbach, W.J., Stevens, D.A. and Denning, D.W. (2003) Combination and Sequential Antifungal Therapy for Invasive Aspergillosis: Review of Published in Vitro and in Vivo Interactions and 6281 Clinical Cases from 1966 to 2001. Clinical Infectious Diseases, 37, S188-S224.
[59]  Arikan, S., Lozano-Chiu, M., Paetznick, V. and Rex, J.H. (2002) In Vitro Synergy of Caspofungin and Amphotericin B against Aspergillus and Fusarium spp. Antimicrobial Agents and Chemotherapy, 46, 245-247.
[60]  Liu, W., Li, L., Sun, Y., Chen, W., Wan, Z., Li, R. and Liu, W. (2012) Interaction of the Echinocandin Caspofungin with Amphotericin B or Voriconazole against Aspergillus Biofilms in Vitro. Antimicrobial Agents and Chemotherapy, 56, 6414-6416.
[61]  Fu, Z., Lu, H., Zhu, Z., Yan, L., Jiang, Y. and Cao, Y. (2011) Combination of Baicalein and Amphotericin B Accelerates Candida albicans Apoptosis. Biological and Pharmaceutical Bulletin, 34, 214-218.
[62]  Guo, N., Ling, G., Liang, X., Jin, J., Fan, J., Qiu, J., Song, Y., Huang, N., Wu, X., Wang, X., Deng, X., Deng, X. and Yu, L. (2011) In Vitro Synergy of Pseudolaric Acid B and Fluconazole against Clinical Isolates of Candida albicans. Mycoses, 54, e400-e406.
[63]  Liu, S., Hou, Y., Chen, X., Gao, Y., Li, H. and Sun, S. (2014) Combination of Fluconazole with Non-Antifungal Agents: A Promising Approach to Cope with Resistant Candida albicans Infections and Insight into New Antifungal Agent Discovery. International Journal of Antimicrobial Agents, 43, 395-402.
[64]  Quan, H., Cao, Y.Y., Xu, Z., Zhao, J.X., Gao, P.H., Qin, X.F. and Jiang, Y.Y. (2006) Potent in Vitro Synergism of Fluconazole and Berberine Chloride against Clinical Isolates of Candida albicans Resistant to Fluconazole. Antimicrobial Agents and Chemotherapy, 50, 1096-1099.
[65]  Han, Y. and Lee, J.H. (2005) Berberine Synergy with Amphotericin B against Disseminated Candidiasis in Mice. Biological and Pharmaceutical Bulletin, 28, 541-544.


comments powered by Disqus

Contact Us


微信:OALib Journal