All Title Author
Keywords Abstract


Genetic Linkage Map and Comparative Genome Analysis for the Atlantic Killifish (Fundulus heteroclitus)

DOI: 10.4236/ojgen.2016.61004, PP. 28-38

Keywords: Fundulus heteroclitus, Genetic Linkage Map, Synteny Analysis, Microsatellite, Single Nucleotide Polymorphism (SNP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic linkage maps are valuable tools in evolutionary biology; however, their availability for wild populations is extremely limited. Fundulus heteroclitus (Atlantic killifish) is a non-migratory estuarine fish that exhibits high allelic and phenotypic diversity partitioned among subpopulations that reside in disparate environmental conditions. An ideal candidate model organism for studying gene-environment interactions, the molecular toolbox for F. heteroclitus is limited. We identified hundreds of novel microsatellites which, when combined with existing microsatellites and single nucleotide polymorphisms (SNPs), were used to construct the first genetic linkage map for this species. By integrating independent linkage maps from three genetic crosses, we developed a consensus map containing 24 linkage groups, consistent with the number of chromosomes reported for this species. These linkage groups span 2300 centimorgans (cM) of recombinant genomic space, intermediate in size relative to the current linkage maps for the teleosts, medaka and zebrafish. Comparisons between fish genomes support a high degree of synteny between the consensus F. heteroclitus linkage map and the medaka and (to a lesser extent) zebrafish physical genome assemblies.

References

[1]  Burnett, K.G., Bain, L.J., Baldwin, W.S., Callard, G.V., Cohen, S., Di Giulio, R., et al. (2007) Fundulus as the Premier Teleost Model in Environmental Biology: Opportunities for New Insights Using Genomics. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2, 257-286.
http://dx.doi.org/10.1016/j.cbd.2007.09.001
[2]  Whitehead, A., Lindmeier, J.B., Duvernell, D.D. and Faust, K.E. (2008) Relative Influences of Historical and Contemporary Forces Shaping the Distribution of Genetic Variation in the Atlantic Killifish, Fundulus heteroclitus. Molecular Ecology, 17, 1344-1360.
http://dx.doi.org/10.1111/j.1365-294X.2007.03648.x
[3]  Nacci, D., Coiro, L., Champlin, D., Jayaraman, S., McKinney, R., Gleason, T., et al. (1999) Adaptation of Wild Fish Populations to Dioxin-Like Environmental Contamination. Marine Biology, 134, 9-17.
http://dx.doi.org/10.1007/s002270050520
[4]  Nacci, D., Champlin, D. and Jayaraman, S. (2010) Adaptation of the Estuarine Fish Fundulus heteroclitus to Toxic Pollutants. Estuaries and Coasts, 33, 853-864.
http://dx.doi.org/10.1007/s12237-009-9257-6
[5]  Van Veld, P.A. and Nacci, D. (2008) Chemical Tolerance: Acclimation and Adaptations to Chemical Stress. In: Di Giulio, R.T. and Hinton, D.E., Eds., The Toxicology of Fishes, Taylor and Francis, USA.
[6]  Whitehead, A., Pilcher, W., Champlin, D. and Nacci, D. (2012) Common Mechanism Underlies Repeated Evolution of Extreme Pollution Tolerance. Proceedings of the Royal Society B: Biological Sciences, 279, 427-433.
http://dx.doi.org/10.1098/rspb.2011.0847
[7]  Adams, A.M., Oleksiak, M.F. and Duvernell, D. (2005) Microsatellite Primers for the Atlantic Coastal Killifish, Fundulus heteroclitus, with Applicability to Related Fundulus Species. Molecular Ecology Notes, 5, 275-277.
http://dx.doi.org/10.1111/j.1471-8286.2005.00898.x
[8]  Li, C., Bessert, M.L., Macrander, J. and Orti, G. (2007) Microsatellite Loci for the Plains Topminnow. (Fundulus sciadicus, Fundulidae). Molecular Ecology Notes, 7, 691-693.
http://dx.doi.org/10.1111/j.1471-8286.2007.01679.x
[9]  Jackson, S.A., Bagley, M., Whitehead, A., Roberts, D.A., Duvernell, D., Nacci, D. and Wang, R.-L. (2010) Isolation and Characterization of Novel Microsatellite Loci for Atlantic Coastal Killifish (Fundulus heteroclitus) from an Expressed Sequence Tag (EST) Library and Cross-Species Amplification. Molecular Ecology Resources, 10, 1098-1105.
[10]  Williams, L.M. and Oleksiak, M.F. (2011) Selectively Important SNPs Identified in Natural Populations. Molecular Biology and Evolution, 28, 1817-1826.
http://dx.doi.org/10.1093/molbev/msr004
[11]  Proestou, D., Flight, P., Champlin, D. and Nacci, D. (2014) Targeted Approach to Identify Genetic Loci Associated with Evolved Dioxin Tolerance in Atlantic Killifish (Fundulus heteroclitus). BMC Evolutionary Biology, 14, 7.
http://dx.doi.org/10.1186/1471-2148-14-7
[12]  Hamilton, M.B., Pincus, E.L., Di-Fiore, A. and Fleischer, R.C. (1999) Universal Linker and Ligation Procedures for Construction of Genomic DNA Libraries Enriched for Microsatellites. Biotechniques, 27, 500-507.
[13]  Glenn, T.C. and Schable, N.A. (2005) Isolating Microsatellite DNA Loci. In: Zimmer, E.A. and Roalson, E., Eds., Molecular Evolution: Producing the Biochemical Data, Part B, Academic, USA, 202-222.
http://dx.doi.org/10.1016/s0076-6879(05)95013-1
[14]  Rozen, S. and Skaletsky, H.J. (2000) Primer3 on the WWW for General Users and for Biologist Programmers. In: Krawetz, S. and Misener, S., Eds., Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, USA.
[15]  Waits, E.R. and Nebert, D.W. (2011) Genetic Architecture of Susceptibility to PCB126-Induced Developmental Cardiotoxicity in Zebrafish. Toxicological Sciences, 122, 466-475.
http://dx.doi.org/10.1093/toxsci/kfr136
[16]  De Givry, S., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. (2005) CARTHAGENE: Multipopulation Integrated Genetic and Radiation Hybrid Mapping. Bioinformatics, 21, 1703-1704.
http://dx.doi.org/10.1093/bioinformatics/bti222
[17]  Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., et al. (2007) The Medaka Draft Genome and Insights into Vertebrate Genome Evolution. Nature, 447, 714-719.
http://dx.doi.org/10.1038/nature05846
[18]  Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., et al. (2013) The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature, 496, 498-503.
http://dx.doi.org/10.1038/nature12111
[19]  Dakin, E.E. and Avise, J.C. (2004) Microsatellite Null Alleles in Parentage Analysis. Heredity, 93, 504-509.
http://dx.doi.org/10.1038/sj.hdy.6800545
[20]  Chen, T.R. and Ruddle, F.H. (1969) A Chromosome Study of Four Species and a Hybrid of the Killifish Genus Fundulus (Cyprinodontidae). Chromosoma, 29, 255-267.
http://dx.doi.org/10.1007/BF00325942
[21]  Chen, T.R. (1971) A Comparative Chromosome Study of Twenty Killifish Species of the Genus Fundulus (Teleostei: Cyprinodontidae). Chromosoma, 32, 436-453.
http://dx.doi.org/10.1007/BF00285254
[22]  Beavis, W.D. and Grant, D. (1991) A Linkage Map Based on Information from Four F2 Populations of Maize (Zea mays L.). Theoretical and Applied Genetics, 82, 636-644.
http://dx.doi.org/10.1007/BF00226803
[23]  Lombard, V. and Delourme, R. (2001) A Consensus Linkage Map for Rapeseed (Brassica napus L.): Construction and Integration of Three Individual Maps from DH Populations. Theoretical and Applied Genetics, 103, 491-507.
http://dx.doi.org/10.1007/s001220100560
[24]  Loridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M., Aubert, G., et al. (2005) Microsatellite Marker Polymorphism and Mapping in Pea (Pisum sativum L.). Theoretical and Applied Genetics, 111, 1022-1031.
http://dx.doi.org/10.1007/s00122-005-0014-3
[25]  Lespinasse, D., Rodier-Goud, M., Grivet, L., Leconte, A., Legnate, H. and Seguin, M. (2000) A Saturated Genetic Linkage Map of Rubber Tree (Hevea spp.) Based on RFLP, AFLP, Microsatellite, and Isozyme Markers. Theoretical and Applied Genetics, 100, 127-138.
http://dx.doi.org/10.1007/s001220050018
[26]  N’Diaye, A., Van de Weg, W.E., Kodde, L.P., Koller, B., Dunemann, F., Thiermann, M., et al. (2008) Construction of an Integrated Consensus Map of the Apple Genome Based on Four Mapping Populations. Tree Genetics & Genomes, 4, 727-743.
http://dx.doi.org/10.1007/s11295-008-0146-0
[27]  Hedrick, P.W. (2007) Sex: Differences in Mutation, Recombination, Selection, Gene Flow, and Genetic Drift. Evolution, 61, 2750-2771.
http://dx.doi.org/10.1111/j.1558-5646.2007.00250.x
[28]  Naruse, K., Tanaka, M., Mita, K., Shima, A., Postlethwait, J. and Mitani, H. (2004) A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping. Genome Research, 14, 820-828.
http://dx.doi.org/10.1101/gr.2004004
[29]  Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., et al. (2005) The Zebrafish Gene Map Defines Ancestral Vertebrate Chromosomes. Genome Research, 15, 1307-1314.
http://dx.doi.org/10.1101/gr.4134305
[30]  Yan, J. and Cai, Z. (2010) Molecular Evolution and Functional Divergence of the Cytochrome P450 3 (CYP3) Family in Actinopterygii (Ray-Finned Fish). PLoS ONE, 5, e14276.
http://dx.doi.org/10.1371/journal.pone.0014276
[31]  Thomas-Chollier, M. and Ledent, V. (2008) Comparative Phylogenomic Analyses of Teleost Fish Hox Gene Clusters: Lessons from the Cichlid Fish Astatotilapia burtoni. BMC Genomics, 9, 35.
http://dx.doi.org/10.1186/1471-2164-9-35
[32]  Cheung, N.K., Cheung, A.C., Ye, R.R., Ge, W., Giesy, J.P. and Au, D.W. (2013) Expression Profile of Oestrogen Receptors and Oestrogen-Related Receptors Is Organ Specific and Sex Dependent: The Japanese Medaka Oryzias latipes Model. Journal of Fish Biology, 83, 295-310.
http://dx.doi.org/10.1111/jfb.12164
[33]  Nadeau, J.H. and Taylor, B.A. (1984) Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. Proceedings of the National Academy of Sciences of the United States of America, 81, 814-818.
http://dx.doi.org/10.1073/pnas.81.3.814
[34]  Hurst, L.D., Pal, C. and Lercher, M.J. (2004) The Evolutionary Dynamics of Eukaryotic Gene Order. Nature Reviews Genetics, 5, 299-310.
http://dx.doi.org/10.1038/nrg1319
[35]  Santini, S., Boore, J.L. and Meyer, A. (2003) Evolutionary Conservation of Regulatory Elements in Vertebrate Hox Gene Clusters. Genome Research, 13, 1111-1122.
http://dx.doi.org/10.1101/gr.700503
[36]  Engstrom, P.G., Sui, S.J.H., Drivenes, O., Becker, T.S. and Lenhard, B. (2007) Genomic Regulatory Blocks Underlie Extensive Microsynteny Conservation in Insects. Genome Research, 17, 1898-1908.
http://dx.doi.org/10.1101/gr.6669607
[37]  Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z., Engstrom, P.G., Fredman, D., et al. (2007) Genomic Regulatory Blocks Encompass Multiple Neighboring Genes and Maintain Conserved Synteny in Vertebrates. Genome Research, 17, 545-555.
http://dx.doi.org/10.1101/gr.6086307
[38]  Venkatesh, B. (2003) Evolution and Diversity of Fish Genomes. Current Opinion in Genetics & Development, 13, 588-592.
http://dx.doi.org/10.1016/j.gde.2003.09.001
[39]  Volff, J.N. (2004) Genome Evolution and Biodiversity in Teleost Fish. Heredity, 94, 280-294.
http://dx.doi.org/10.1038/sj.hdy.6800635
[40]  Mitton, J.B. (1994) Molecular Approaches to Population Biology. Annual Review of Ecology and Systematics, 25, 45-69.
http://dx.doi.org/10.1146/annurev.es.25.110194.000401
[41]  Wirgin, I. and Waldman, J.R. (2004) Resistance to Contaminants in North American Fish Populations. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 552, 73-100.
http://dx.doi.org/10.1016/j.mrfmmm.2004.06.005
[42]  Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., et al. (1996) A Genetic Screen for Mutations Affecting Embryogenesis in Zebrafish. Development, 123, 37-46.
[43]  Furutani-Seiki, M., Sasado, T., Morinaga, C., Suwa, H., Niwa, K., Yoda, H., et al. (2004) A Systematic Genome-Wide Screen for Mutations Affecting Organogenesis in Medaka, Oryzias latipes. Mechanisms of Development, 121, 647-658.
http://dx.doi.org/10.1016/j.mod.2004.04.016

Full-Text

comments powered by Disqus