All Title Author
Keywords Abstract


Convergence Curve for Non-Blind Adaptive Equalizers

DOI: 10.4236/jsip.2016.71002, PP. 7-17

Keywords: Non-Blind Adaptive Equalizers, Non-Blind Adaptive Deconvolution, Acquisition Time, Convergence Time

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.

References

[1]  Pinchas, M. (2013) Residual ISI Obtained by Nonblind Adaptive Equalizers and Fractional Noise. Mathematical Problems in Engineering, 2013, Article ID: 830517, 7 p.
[2]  Pinchas, M. (2013) Two Blind Adaptive Equalizers Connected in Series for Equalization Performance Improvement. Journal of Signal and Information Processing, 4, 64-71.
http://dx.doi.org/10.4236/jsip.2013.41008
[3]  Pinchas, M. (2013) Residual ISI obtained by Blind Adaptive Equalizers and Fractional Noise. Mathematical Problems in Engineering, 2013, Research Article: 972174, 111.
[4]  Reuter, M. and Zeidler, J.R. (1999) Nonlinear Effects in LMS Adaptive Equalizers. IEEE Transactions on Signal Processing, 47, 1570-1579.
http://dx.doi.org/10.1109/78.765126
[5]  Makki, A.H.I., Dey, A.K. and Khan, M.A. (2010) Comparative Study on LMS and CMA Channel Equalization. Information Society (i-Society), 2010 International Conference, 487-489.
[6]  Tucu, E., Akir, F. and Zen, A. (2013) A New Step Size Control Technique for Blind and Non-Blind Equalization Algorithms. Radioengineering, 22, 44.
[7]  http://www.academypublisher.com/proc/iscsct10/papers/iscsct10p256.pdf
[8]  Malik, G. and Sappal, A.S. (2011) Adaptive Equalization Algorithms: An Overview. International Journal of Advanced Computer Science and Applications (IJACSA), 2, 62-67.
[9]  Nikias, C.L. and Petropulu, A.P., Eds. (1993) Higher-Order Spectra Analysis A Nonlinear Signal Processing Framework. Prentice-Hall, Upper Saddle River, Chapter 9, 419-425.
[10]  Bellini, S. (1986) Bussgang Techniques for Blind Equalization. IEEE Global Telecommunication Conference Records, 1634-1640.
[11]  Fiori, S. (2001) A Contribution to (Neuromorphic) Blind Deconvolution by Flexible Approximated Bayesian Estimation. Signal Processing, 81, 2131-2153.
http://dx.doi.org/10.1016/S0165-1684(01)00108-6
[12]  Haykin, S. (1991) Blind Deconvolution. In: Haykin, S., Ed., Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, Chapter 20.
[13]  Pinchas, M. and Bobrovsky, B.Z. (2006) A Maximum Entropy Approach for Blind Deconvolution. Signal Processing (Eurasip), 86, 2913-2931.
http://dx.doi.org/10.1016/j.sigpro.2005.12.009
[14]  Pinchas, M. (2010) A Closed Approximated Formed Expression for the Achievable Residual Intersymbol Interference Obtained by Blind Equalizers. Signal Processing Journal (Eurasip), 90, 1940-1962.
http://dx.doi.org/10.1016/j.sigpro.2009.12.014
[15]  Godfrey, R. and Rocca, F. (1981) Zero Memory Non-Linear Deconvolution, Geophys. Prospect, 29, 189-228.
http://dx.doi.org/10.1111/j.1365-2478.1981.tb00401.x
[16]  Shalvi, O. (1990) Weinstein E. New Criteria for Blind Deconvolution of Nonminimum Phase Systems (Channels). IEEE Transactions on Information Theory, 36, 312-321.
http://dx.doi.org/10.1109/18.52478

Full-Text

comments powered by Disqus