All Title Author
Keywords Abstract

Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection

DOI: 10.1371/journal.pcbi.1004694

Full-Text   Cite this paper   Add to My Lib


Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result.


[1]  Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet. 2004;5(1):52–61. pmid:14708016 doi: 10.1038/nrg1246
[2]  Abram ME, Sarafianos SG, Parniak MA. The mutation T477A in HIV-1 reverse transcriptase (RT) restores normal proteolytic processing of RT in virus with Gag-Pol mutated in the p51-RNH cleavage site. Retrovirology. 2010;7. doi: 10.1186/1742-4690-7-6
[3]  Alizon S, Fraser C. Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology. 2013;10. doi: 10.1186/1742-4690-10-49
[4]  Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet. 2009;10(8):540–50. doi: 10.1038/nrg2583. pmid:19564871
[5]  Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol. 1999;73(12):10489–502. pmid:10559367
[6]  Carvajal-Rodriguez A, Posada D, Perez-Losada M, Keller E, Abrams EJ, Viscidi RP, et al. Disease progression and evolution of the HIV-1 env gene in 24 infected infants. Infect Genet Evol. 2008;8(2):110–20. doi: 10.1016/j.meegid.2007.10.009. pmid:18249158
[7]  Zanotto PMD, Kallas EG, de Souza RF, Holmes EC. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics. 1999;153(3):1077–89. pmid:10545443
[8]  Ross HA, Rodrigo AG. Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol. 2002;76(22):11715–20. pmid:12388731 doi: 10.1128/jvi.76.22.11715-11720.2002
[9]  Frost SD, Wrin T, Smith DM, Kosakovsky Pond SL, Liu Y, Paxinos E, et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A. 2005;102(51):18514–9. pmid:16339909 doi: 10.1073/pnas.0504658102
[10]  Kryazhimskiy S, Plotkin JB. The Population Genetics of dN/dS. Plos Genet. 2008;4(12). doi: 10.1371/journal.pgen.1000304
[11]  Sheridan I, Pybus OG, Holmes EC, Klenerman P. High-resolution phylogenetic analysis of hepatitis C virus adaptation and its relationship to disease progression. J Virol. 2004;78(7):3447–54. pmid:15016867 doi: 10.1128/jvi.78.7.3447-3454.2004
[12]  Williamson S. Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol Biol Evol. 2003;20(8):1318–25. pmid:12777505 doi: 10.1093/molbev/msg144
[13]  McIntosh K, Shevitz A, Zaknun D, Kornegay J, Chatis P, Karthas N, et al. Age- and time-related changes in extracellular viral load in children vertically infected by human immunodeficiency virus. Pediatr Infect Dis J. 1996;15(12):1087–91. pmid:8970217 doi: 10.1097/00006454-199612000-00006
[14]  Marinda E, Humphrey JH, Iliff PJ, Mutasa K, Nathoo KJ, Piwoz EG, et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr Infect Dis J. 2007;26(6):519–26. pmid:17529870 doi: 10.1097/01.inf.0000264527.69954.4c
[15]  Fawzi W, Msamanga G, Renjifo B, Spiegelman D, Urassa E, Hashemi L, et al. Predictors of intrauterine and intrapartum transmission of HIV-1 among Tanzanian women. Aids. 2001;15(9):1157–65. pmid:11416718 doi: 10.1097/00002030-200106150-00011
[16]  Becquet R, Marston M, Dabis F, Moulton LH, Gray G, Coovadia HM, et al. Children who acquire HIV infection perinatally are at higher risk of early death than those acquiring infection through breastmilk: a meta-analysis. Plos One. 2012;7(2):e28510. doi: 10.1371/journal.pone.0028510. pmid:22383946
[17]  Goo L, Chohan V, Nduati R, Overbaugh J. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat Med. 2014;20(6):655–8. doi: 10.1038/nm.3565. pmid:24859529
[18]  Adland E, Paioni P, Thobakgale C, Laker L, Mori L, Muenchhoff M, et al. Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection. Plos Pathog. 2015;11(6):e1004954. doi: 10.1371/journal.ppat.1004954. pmid:26076345
[19]  Farci P, Wollenberg K, Diaz G, Engle RE, Lai ME, Klenerman P, et al. Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis. Proc Natl Acad Sci USA. 2012;109(36):14562–7. doi: 10.1073/pnas.1210592109. pmid:22829669
[20]  Huang KH, Bonsall D, Katzourakis A, Thomson EC, Fidler SJ, Main J, et al. B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. Nat Commun. 2010;1:102. doi: 10.1038/ncomms1100. pmid:20981030
[21]  Miller CJ, Genesca M, Abel K, Montefiori D, Forthal D, Bost K, et al. Antiviral antibodies are necessary for control of simian immunodeficiency virus replication. J Virol. 2007;81(10):5024–35. pmid:17329327 doi: 10.1128/jvi.02444-06
[22]  Schmitz JE, Kuroda MJ, Santra S, Simon MA, Lifton MA, Lin W, et al. Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus. J Virol. 2003;77(3):2165–73. pmid:12525651 doi: 10.1128/jvi.77.3.2165-2173.2003
[23]  Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12. pmid:12646921 doi: 10.1038/nature01470
[24]  Haraguchi Y, Sasaki A. Evolutionary pattern of intra-host pathogen antigenic drift: effect of cross-reactivity in immune response. Philos Trans R Soc Lond B Biol Sci. 1997;352(1349):11–20. pmid:9051713 doi: 10.1098/rstb.1997.0002
[25]  Bhatt S, Holmes EC, Pybus OG. The Genomic Rate of Molecular Adaptation of the Human Influenza A Virus. Mol Biol Evol. 2011;28(9):2443–51. doi: 10.1093/molbev/msr044. pmid:21415025
[26]  Bhatt S, Katzourakis A, Pybus OG. Detecting natural selection in RNA virus populations using sequence summary statistics. Infect Genet Evol. 2010;10(3):421–30. doi: 10.1016/j.meegid.2009.06.001. pmid:19524068
[27]  Bhatt S, Lam TT, Lycett SJ, Brown AJL, Bowden TA, Holmes EC, et al. The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philos Trans R Soc Lond B Biol Sci. 2013;368(1614). doi: 10.1098/rstb.2012.0382
[28]  Mcdonald JH, Kreitman M. Adaptive Protein Evolution at the Adh Locus in Drosophila. Nature. 1991;351(6328):652–4. pmid:1904993 doi: 10.1038/351652a0
[29]  Smith NGC, Eyre-Walker A. Adaptive protein evolution in Drosophila. Nature. 2002;415(6875):1022–4. pmid:11875568 doi: 10.1038/4151022a
[30]  Li W-H. Molecular evolution. Sunderland, Mass.: Sinauer Associates; 1997. xv, 487 p. p.
[31]  Thomas PA, Weedon J, Krasinski K, Abrams E, Shaffer N, Matheson P, et al. Maternal Predictors of Perinatal Human-Immunodeficiency-Virus Transmission. Pediatr Infect Dis J. 1994;13(6):489–95. pmid:8078735 doi: 10.1097/00006454-199406000-00005
[32]  Abrams EJ, Matheson PB, Thomas PA, Thea DM, Krasinski K, Lambert G, et al. Neonatal Predictors of Infection Status and Early Death among 332 Infants at Risk of Hiv-1 Infection Monitored Prospectively from Birth. Pediatrics. 1995;96(3):451–8. pmid:7651777
[33]  Edwards CTT, Holmes EC, Pybus OG, Wilson DJ, Viscidi RP, Abrams EJ, et al. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection. Genetics. 2006;174(3):1441–53. pmid:16951087 doi: 10.1534/genetics.105.052019
[34]  Strunnikova N, Ray SC, Livingston RA, Rubalcaba E, Viscidi RP. Convergent evolution within the V3 loop domain of human immunodeficiency virus type 1 in association with disease progression. J Virol. 1995;69(12):7548–58. pmid:7494261
[35]  Edwards CT, Pfafferott KJ, Goulder PJ, Phillips RE, Holmes EC. Intrapatient escape in the A*0201-restricted epitope SLYNTVATL drives evolution of human immunodeficiency virus type 1 at the population level. J Virol. 2005;79(14):9363–6. pmid:15994836 doi: 10.1128/jvi.79.14.9363-9366.2005
[36]  Pennings PS, Kryazhimskiy S, Wakeley J. Loss and recovery of genetic diversity in adapting populations of HIV. Plos Genet. 2014;10(1):e1004000. doi: 10.1371/journal.pgen.1004000. pmid:24465214
[37]  Nowak MA, May RM. Virus dynamics: mathematical principles of immunology and virology. Oxford; New York: Oxford University Press; 2000. xii, 237 p. p.
[38]  Crow JF, Kimura M. An introduction to population genetics theory. New York,: Harper & Row; 1970. xiv, 591 p. p.
[39]  Luo S, Reed M, Mattingly JC, Koelle K. The impact of host immune status on the within-host and population dynamics of antigenic immune escape. J R Soc Interface. 2012;9(75):2603–13. doi: 10.1098/rsif.2012.0180. pmid:22572027
[40]  Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973;246(5428):96–8. pmid:4585855 doi: 10.1038/246096a0
[41]  Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 2004;303(5656):327–32. pmid:14726583 doi: 10.1126/science.1090727
[42]  Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR, et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. Plos Pathog. 2012;8(3):e1002529. doi: 10.1371/journal.ppat.1002529. pmid:22412369
[43]  Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Investig. 2013;123(1):380–93. doi: 10.1172/JCI65330. pmid:23221345
[44]  Bustamante CD, Wakeley J, Sawyer S, Hartl DL. Directional selection and the site-frequency spectrum. Genetics. 2001;159(4):1779–88. pmid:11779814
[45]  Nielsen R, Yang Z. Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol Biol Evol. 2003;20(8):1231–9. pmid:12777508 doi: 10.1093/molbev/msg147
[46]  Neher RA, Hallatschek O. Genealogies of rapidly adapting populations. Proc Natl Acad Sci U S A. 2013;110(2):437–42. doi: 10.1073/pnas.1213113110. pmid:23269838
[47]  Quinones-Mateu ME, Ball SC, Marozsan AJ, Torre VS, Albright JL, Vanham G, et al. A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J Virol. 2000;74(19):9222–33. pmid:10982369 doi: 10.1128/jvi.74.19.9222-9233.2000
[48]  Scherer A, Frater J, Oxenius A, Agudelo J, Price DA, Gunthard HF, et al. Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc Natl Acad Sci U S A. 2004;101(33):12266–70. pmid:15302942 doi: 10.1073/pnas.0404091101


comments powered by Disqus