All Title Author
Keywords Abstract


正交投影和幂等算子线性组合的w-加权drazin逆

DOI: 10.13484/j.nmgdxxbzk.20150404, PP. 355-362

Keywords: 正交投影算子,幂等算子,空间分解,drazin逆,w-加权drazin逆

Full-Text   Cite this paper   Add to My Lib

Abstract:

借助空间分解,得到了在满足条件pqp=p时,无穷维hilbert空间中的正交投影算子p和幂等算子q的线性组合mp+nq的w-加权drazin可逆性及其w-加权drazin逆的表达式.

References

[1]  liuxj,wull,yuym.thegroupinverseofthecombinationsoftwoidempotentmatrices[j].linearandmultilinearalgebra,2011,59(1):101-115.
[2]  dengcy.thedrazininversesofsumanddifferenceofidempotents[j].linearalgebraappl,2009,430(4):1282-1291.
[3]  dengcy.thedrazininversesofproductsanddifferenceoforthogonalprojections[j].journalofmathematicalanalysisandapplications,2007,335(1):64-71.
[4]  段樱桃.两个幂等算子多线性组合的drazin逆[j].信阳师范学院学报:自然科学版,2013,26(3):316-319.
[5]  wanggr,weiym,qiaosz.generalizedinverses:theoryandcomputations[m].beijing:sciencepress,2004.
[6]  weiym,qiaosz.therepresentationandapproximationofthedrazininverseofalinearoperatorinhilbertspace[j].applmathcomput,2003,138(1):77-89.
[7]  castro-gonzlezn,kolihajj.newadditiveresultsfortheg-drazininverse[j].procroysocedinburgh,2004,134(6):1085-1097.
[8]  吴珍莺,陈剑岚,曾清平.幂等算子线性组合的drazin可逆性[j].福建师范大学学报,2011,27(6):5-10.
[9]  zhangsf,wujd.thedrazininverseofthelinearcombinationsoftwoidempotentsinthebanachalgebras[j].linearalgebraanditsapplications,2012,436(9):3132-3138.
[10]  cvetkovic-llicds,dengcy.thedrazininvertibilityofthedifferenceandthesumoftwoidempotentoperators[j].journalofcomputationandappliedmathematics,2010,233(8):1717-1722.
[11]  dengyc,weiym.characterizationsandrepresentationsofthedrazininverseinvolvingidempotents[j].linearalgebraappl,2009,431(9):1526-1538.
[12]  钟金,刘晓冀.hilbert空间上算子w-加权drazin逆的刻画及表示[j].数学物理学报,2010,30a(4):915-921.
[13]  drazinmp.pseudo-inversesinassociativeringsandsemigroups[j].amermathmonthly,1958,65(7):506-514.
[14]  wanggr,weiym,qiaosz.generalizedinverse:theoryandcomputations[m].beijing,newyork:sciencepress,1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal