全部 标题 作者
关键词 摘要

大气科学  2014 

毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究

DOI: 10.3878/j.issn.1006-9895.2013.12207

Keywords: 毫米波云雷达,功率谱密度,雨滴谱反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先利用数值模拟的方法,分析了利用毫米波云雷达功率谱密度反演雨滴谱时,降水粒子米散射效应、空气湍流、空气上升速度等对雨滴谱和液态水含量等参数反演的影响;建立了功率谱密度处理及其直接反演雨滴谱、液态水含量、降水强度和空气上升速度的方法;并利用2012年7月在云南腾冲观测的二次弱降水数据,采用毫米波雷达和Ku波段微降水雷达观测的回波强度、径向速度垂直廓线以及780m高度上的功率谱密度对比的方法,以及毫米波云雷达观测的780m高度上功率谱密度、回波强度与地面雨滴谱计算得到的这些量的对比方法,分析了毫米波雷达数据的可靠性;并将780m高度上毫米波雷达反演的雨滴谱与地面雨滴谱数据进行了对比,分析了毫米波雷达反演的雨滴谱的准确性;分析了毫米波雷达回波强度偏弱的原因,讨论了该高度以下降水对毫米波雷达衰减的影响。结果表明:空气湍流对弱降水微物理参数反演影响不大,而空气上升速度和米散射效应均对反演结果有一定影响;毫米波雷达观测到的径向速度和功率谱密度与微降水雷达比较一致,回波强度的垂直廓线的形状与微降水雷达也比较一致,但毫米波雷达观测的回波强度偏弱;与雨滴谱计算值相比,毫米波雷达观测的低层的回波强度也偏弱,天线上的积水是造成毫米波雷达回波强度变弱的主要原因。毫米波雷达观测的低层的功率谱密度与地面雨滴谱观测的数据形状比较一致,但有一定的位移。毫米波雷达反演的雨滴谱与地面观测的谱型和粒子大小也比较一致。这些结果初步验证了毫米波雷达观测的功率谱密度及其反演方法的可靠性。

References

[1]  Barber P, Yeh C. 1975. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies[J]. Appl. Opt., 14 (12): 2864-2872.
[2]  Deng M, Mace G G. 2006. Cirrus microphysical properties and air motion statistics using cloud radar Doppler moments. Part I: Algorithm description[J]. J. Appl. Meteor. Climatol., 45 (12): 1690-1709.
[3]  Frisch A S, Fairall C W, Snider J B. 1995. Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer[J]. J. Atmos. Sci., 52 (16): 2788-2799.
[4]  Gossard E E. 1994. Measurement of cloud droplet size spectra by Doppler radar[J]. J. Atmos. Oceanic Technol., 11 (3): 712-726.
[5]  Gossard E E, Snider J B, Clothiaux E E, et al. 1997. The potential of 8-mm radars for remotely sensing cloud drop size distributions[J]. J. Atmos. Oceanic Technol., 14 (1): 76-87.
[6]  Liu Liping, Zhang Zhiqiang, Yu Danru, et al. 2012. Comparison of precipitation observations between principle prototype space-based cloud radar and ground-based radars[J]. Adv. Atmos. Sci., 29 (6): 1318-1329.
[7]  刘黎平, 宗蓉, 齐彦斌, 等. 2012. 云雷达反演层状云微物理参数及其与飞机观测数据的对比[J]. 中国工程科学, 14 (9): 64-71. Liu Liping, Zong Rong, Qi Yanbin, et al. 2012. Microphysical parameters retrieval by cloud radar and comparing with aircraft observation in stratiform cloud[J]. Engineering Sciences (in Chinese), 14 (9): 64-71.
[8]  彭亮, 陈洪滨, 李柏. 2012.3 mm多普勒云雷达测量反演云内空气垂直速度的研究[J]. 大气科学, 36 (1): 1-10. Peng Liang, Chen Hongbin, Li Bai. 2012. A case study of deriving vertical air velocity from 3-mm cloud radar[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1): 1-10.
[9]  Rogers R R, Baumgardner D, Ethier S A, et al. 1993. Comparison of raindrop size distributions measured by radar wind profiler and by airplane[J]. J. Appl. Meteor., 32 (4): 694-699.
[10]  Shupe M D, Pavlos K, Michael P, et al. 2008. On deriving vertical air motions from cloud radar Doppler spectra[J]. J. Atmos. Oceanic Technol., 25 (4): 547-556.
[11]  王晓蕾, 阮征, 葛润生, 等. 2010. 风廓线雷达探测降水云体中雨滴谱的试验研究[J]. 高原气象, 29 (2): 498-505. Wang Xiaolei, Ruan Zheng, Ge Runsheng, et al. 2010. A study of drop-size distribution in precipitation cloud from wind profile radar[J]. Plateau Meteorology (in Chinese), 29 (2): 498-505.
[12]  Zhong Lingzhi, Liu Liping, Feng Sheng, et al. 2011. A 35-GHz polarimetric Doppler radar and its application for observing clouds associated with typhoon Nuri[J]. Adv. Atmos. Sci., 28 (4): 945-956.
[13]  Zhong Lingzhi, Liu Liping, Deng Min, et al. 2012. Retrieving microphysical properties and air motion of cirrus clouds based on the Doppler moments method using cloud radar[J]. Adv. Atmos. Sci., 29 (3): 611-622.

Full-Text

comments powered by Disqus