Caniaux G, Redelsperger J L, Lafore J P. 1994. A numerical study of the stratiform region of a fast-moving squall line. Part I:General description and water and heat budgets [J]. J. Atmos. Sci., 51 (14):2046-2074.
[2]
Carbone R E, Bohne A R. 1975. Cellular snow generation—A doppler radar study [J]. J. Atmos. Sci., 32 (7):1384-1394. 陈宝君, 李子华, 刘吉成, 等. 1998. 三类降水云雨滴谱分布模式 [J]. 气象学报, 56 (4):506-512. Chen B J, Li Z H, Liu J C, et al. 1998.
[3]
Model of raindrop size distribution in three types of precipitation [J].Acta Meteorologica Sinica (in Chinese), 56 (4):506-512.
[4]
Colle B A, Mass C F. 2000. The 5-9 February 1996 flooding event over the pacific northwest:Sensitivity studies and evaluation of the MM5 precipitation forecasts [J]. Mon. Wea. Rev., 128 (3):593-617.
[5]
Colle B A, Westrick K J, Mass C F. 1999. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season [J]. Wea. Forecasting, 14 (2):137-154.
[6]
Evans A G, Locatelli J D, Stoelinga M T, et al. 2005. The IMPROVE-1 storm of 1-2 February 2001. Part II:Cloud structures and the growth of precipitation [J]. J. Atmos. Sci., 62 (10):3456-3473.
[7]
Field P R, Hogan R J, Brown P R A, et al. 2005. Parametrization of ice-particle size distributions for mid-latitude stratiform cloud [J]. Quart.J. Roy. Meteor. Soc., 131 (609):1997-2017.
[8]
Garvert M F, Woods C P, Colle B A, et al. 2005. The 13-14 December 2001 IMPROVE-2 event. Part II:Comparisons of MM5 model simulations of clouds and precipitation with observations [J]. J. Atmos. Sci., 62 (10):3520-3534.
[9]
Herzegh P H, Hobbs P V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II:Warm-frontal clouds [J]. J. Atmos. Sci., 37:597-611.
[10]
Herzegh P H, Hobbs P V. 1981. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IV:Vertical air motions and microphysical structures of prefrontal surge clouds and cold-frontal clouds [J]. J. Atmos. Sci., 38 (8):1771-1784.
[11]
Heymsfield A J, Bansemer A, Field P R, et al. 2002. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds:Results from in situ observations in TRMM field campaigns [J]. J. Atmos. Sci., 59 (24):3457-3491.
[12]
Heymsfield A J, Bansemer A, Schmitt C, et al. 2004a. Effective ice particle densities derived from aircraft data [J]. J. Atmos. Sci., 61 (9):982-1003.
[13]
Heymsfield A J, Schmitt C G, Bansemer A, et al. 2004b. Effective ice particle densities for cold anvil cirrus [J]. Geophys. Res. Lett., 31 (2):L02101.
[14]
Hobbs P V, Locatelli J D. 1978. Rainbands, precipitation cores and generating cells in a cyclonic storm [J]. J. Atmos. Sci., 35 (2):230-241.
[15]
Hobbs P V, Matejka T J, Herzegh P H, et al. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I:A case study of a cold front [J]. J. Atmos. Sci., 37 (3):568-596.
[16]
Hobbs P V, Rangno A L. 1990. Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds [J]. J. Atmos.
[17]
Sci., 47 (22):2710-2722. 洪延超, 黄美元, 王首平. 1984. 梅雨云系中亮带不均匀性的理论探讨 [J]. 大气科学, 8 (2):197-204. Hong Y C, Huang M Y, Wang S P. 1984. A theoretical study on inhomogeneity of bright band in Mei-yu frontal cloud system [J]. Scientia Atmospherica Sinica (in Chinese), 8 (2):197- 204.
[18]
Hou T J, Lei H C, Hu Z X, et al. 2013. Observations and modeling of ice water content in a mixed-phase cloud system [J]. Atmos. Oceanic Sci.Lett., 6 (4):210-215.
[19]
Houze R A Jr, Hobbs P V, Herzegh P H, et al. 1979. Size distributions of precipitation particles in frontal clouds [J]. J. Atmos. Sci., 36 (1):156- 162.
[20]
Houze R A Jr, Rutledge S A, Matejka T J, et al. 1981. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III:Air motions and precipitation growth in a warm-frontal rainband [J]. J. Atmos. Sci., 38 (3):639-649. 胡朝霞, 雷恒池, 郭学良, 等. 2007. 降水性层状云系结构和降水过程的 观测个例与模拟研究 [J]. 大气科学, 31 (3):425-439. Hu Z X, Lei HC, Guo X L, et al. 2007. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal ofAtmospheric Sciences (in Chinese), 31 (3):425-439. 黄美元, 洪延超. 1984. 在梅雨锋云系内层状云回波结构及其降水的不 均匀性 [J]. 气象学报, 42 (1):81-87. Huang M Y, Hong Y C. 1984.
[21]
The inhomogeneous features of the precipitation and the echo structure of stratiform cloud in Mei-yu frontal cloud system [J]. Acta MeteorologicaSinica (in Chinese), 42 (1):81-87.
[22]
Korolev A V, Bailey M P, Hallett J, et al. 2004. Laboratory and in situ observation of deposition growth of frozen drops [J]. J. Appl. Meteor., 43 (4):612-622.
[23]
Lang S E, Tao W K, Zeng X P, et al. 2011. Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme:Tropical convective systems [J]. J. Atmos. Sci., 68 (10):2306-2320.
[24]
Lawson R P, Stewart R E, Angus L J. 1998. Observations and numerical simulations of the origin and development of very large snowflakes [J]. J.Atmos. Sci., 55 (21):3209-3229.
[25]
Lawson R P, Stewart R E, Strapp J W, et al. 1993. Aircraft observations of the origin and growth of very large snowflakes [J]. Geophys. Res. Lett., 20 (1):53-56.
[26]
Lawson R P, Zuidema P. 2009. Aircraft microphysical and surface-based radar observations of summertime arctic clouds [J]. J. Atmos. Sci., 66 (12):3505-3529.
[27]
Lu G X, Guo X L. 2012. Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE) [J]. Chin. Sci. Bull., 57 (19):2460-2469.
[28]
Marshall J S. 1953. Precipitation trajectories and patterns [J]. J. Meteor., 10 (1):25-29.
[29]
Matejka T J, Houze R A Jr, Hobbs P V. 1980. Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones [J].Quart. J. Roy. Meteor. Soc., 106 (447):29-56.
[30]
McFarquhar G M, Black R A. 2004. Observations of particle size and phase in tropical cyclones:Implications for mesoscale modeling of microphysical processes [J]. J. Atmos. Sci., 61 (4):422-439.
[31]
Molthan A L, Petersen W A, Nesbitt S W, et al. 2010. Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme [J]. Mon. Wea. Rev., 138 (11):4254-4267.
[32]
Morrison H, Gettelman A. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I:Description and numerical tests [J]. J. Climate, 21 (15):3642-3659.
[33]
Ono A. 1969. The shape and riming properties of ice crystals in natural clouds [J]. J. Atmos. Sci., 26 (1):138-147.
[34]
Plank V G, Atlas D, Paulsen W H. 1955. The nature and detectability of clouds and precipitation as determined by 1.25-centimeter radar [J]. J.Meteor., 12 (4):358-378.
[35]
Redelsperger J L, Brown P R A, Guichard F, et al. 2000. A GCSS model intercomparison for a tropical squall line observed during TOGACOARE.I:Cloud-resolving models [J]. Quart. J. Roy. Meteor. Soc., 126 (564):823-863.
[36]
Reisner J, Rasmussen R M, Bruintjes R T, et al. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model [J]. Quart. J. Roy. Meteor. Soc., 124 (548):1071-1107.
[37]
Rutledge S A, Hobbs P. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII:A model for the “seeder-feeder” process in warm-frontal rainbands [J]. J.Atmos. Sci., 40 (5):1185-1206.
[38]
Stoelinga M T, Hobbs P V, Mass C F, et al. 2003. Improvement of microphysical parameterization through observational verification experiment [J]. Bull. Amer. Meteor. Soc., 84 (12):1807-1826.
[39]
Syrett W J, Albrecht B A, Clothiaux E E. 1995. Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar [J]. Mon. Wea. Rev., 123 (12):3393-3407.
[40]
Takahashi T, Fukuta N. 1988. Supercooled cloud tunnel studies on the growth of snow crystals between ―4℃ and ―20℃ [J]. J. Meteor. Soc.Japan, 66:841-855.
[41]
Tao W K, Simpson J, Soong S T. 1991. Numerical simulation of a subtropical squall line over the Taiwan Strait [J]. Mon. Wea. Rev., 119:2699-2723. 陶玥, 齐彦斌, 洪延超. 2009. 霰粒子下落速度对云系及降水发展影响 的数值研究 [J]. 气象学报, 67 (3):370-381. Tao Y, Qi Y B, Hong Y C. 2009. Numerical simulations of the influence of the graupel fall terminal velocity on cloud system and precipitation development [J]. Acta Meteorologica Sinica (in Chinese), 67 (3):370-381.
[42]
Trier S B, Skamarock W C, LeMone M A, et al. 1996. Structure and evolution of the 22 February 1993 TOGA COARE squall line:Numerical simulations [J]. J. Atmos. Sci., 53 (20):2861-2886.
[43]
Wexler R, Atlas D. 1959. Precipitation generating cells [J]. J. Meteor., 16 (3):327-332.
[44]
Woods C P, Stoelinga M T, Locatelli J D. 2008. Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest [J].J. Atmos. Sci., 65 (1):189-205.
[45]
Xu K M, Randall D A. 2001. Explicit simulation of cumulus ensembles with the GATE phase III data:Budgets of a composite easterly wave [J]. Quart.J. Roy. Meteor. Soc., 127(575):1571-1591.
[46]
杨洁帆, 雷恒池, 胡朝霞. 2010. 一次层状云降水过程微物理机制的数 值模拟研究 [J]. 大气科学, 34 (2):275-289. Yang J F, Lei H C, Hu ZX. 2010. Simulation of the stratiform cloud precipitation microphysical mechanism with the numerical model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (2):275-289.
[47]
朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程 的飞机探测研究 [J]. 气象学报, 72 (2):366-389, doi:10.11676/ qxxb2014.013. Zhu S C, Guo X L. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection inNorth China:Aircraft measurements [J]. Acta Meteorologica Sinica (in Chinese), 72 (2):366-389.