全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

国际海洋浮游动物研究进展

DOI: 10.3969/j.issn.0253-4193.2013.04.001, PP. 1-10

Keywords: 海洋浮游生物,浮游动物,研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了国际上有关海洋浮游动物种群、群落结构、多样性及浮游动物对全球气候变化响应等方面研究进展。海洋浮游动物种类繁多,数量丰富,分布广泛,是海洋生态系统中最重要的生物类群。在海洋食物网中,浮游动物通过摄食浮游植物控制初级生产力,同时,又被更高营养阶层的动物(鱼、虾、鲸、海鸟等)捕食,充当次级生产者的角色,其群落结构、种群动态和物种多样性影响鱼类和其他海洋动物资源量,浮游动物是海洋食物网中关键环节。海洋生态系统动力学过程的关键环节是浮游生物的生物学和生态学过程,多项国际研究计划以生物多样性和年际变化趋势为研究重点并联系全球变化及响应,因此,浮游动物的研究已成为海洋生态研究的核心内容之一。国际上对浮游动物的研究主要集中在以下6个方向:(1)浮游动物生境、种群的分布和扩散动力学研究;(2)浮游动物的群落结构和多样性;(3)浮游动物的实验生态和现场受控生态研究;(4)浮游动物对全球气候变化的响应;(5)深海、南北极、低氧区等极端生境的浮游动物生态学研究;(6)浮游动物研究新技术和方法。

References

[1]  李少菁,许振祖,黄加祺,等.海洋浮游动物研究[J].厦门大学学报(自然科学版),2001,40(2):574-585.
[2]  Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416: 389-395.
[3]  Nikitin A N. Vertical distribution of plankton in the Black Sea. Proc. Sp. zool. Lab. and Sevast[J]. Biol St AcSci(in Russian), 1926, 2(9): 93-140.
[4]  Sydeman W J, Thompson S A, Santora J A, et al. Macro-ecology of plankton-seabird associations in the North Pacific Ocean[J]. J Plankton Res, 2010, 32: 1697-1713.
[5]  Turner J T. The importance of small planktonic copepods and their roles in pelagic marine food webs[J]. Zool Stud, 2004, 43: 255-266.
[6]  Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405: 220-227.
[7]  Park G S, Marshall H G. Estuary relationships between zooplankton community structure and trophic gradients[J]. J Plankton Res, 2000, 22: 121-135.
[8]  Tittensor D P, Mora C, Jetz W, et al. Global patterns and predictors of marine biodiversity across taxa[J]. Nature, 2010, 466: 1098-1101.
[9]  Heath M R, Backhaus J O, Richardson K, et al. Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus [J]. Fish Oceanogr, 1999, 8: 163-176.
[10]  Beaugrand G, Reid P C, Ibanez F, et al. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate[J]. Science, 2002, 296: 1692-1694.
[11]  Manriquez K, Escribano R, Hidalgo P. The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern chile as assessed by automated image analysis[J]. J Plankton Res, 2009, 31: 1075-1088.
[12]  Aguiar M A M, Baranger M, Baptestini E M, et al. Global patterns of speciation and diversity[J]. Nature, 2009, 460: 384-387.
[13]  Raskoff K A, Sommer F A, Hamner W M, et al. Collection and culture techniques for gelatinous zooplankton[J]. Biol Bull, 2003, 204: 68-80.
[14]  Bertram D F, Harfenist A, Hedd A. Seabird nestling diets reflect latitudinal temperature-dependent variation in availability of key zooplankton prey populations[J]. Mar Ecol Prog Ser, 2009, 393: 199-210.
[15]  Poleck T P, Denys C J. Effect of temperature on the molting, growth and maturation of the antarctic krill Euphausia superb (Crustacea: Euphausiacea) under laboratory conditions[J]. Mar Biol, 1982, 70: 255-265.
[16]  David J A, Stuart A W. Changing sex at the same relative body size[J]. Nature, 2003, 783-784.
[17]  Ide K, Takahashi K, Kuwata A, et al. A rapid analysis of copepod feeding using Flow CAM[J]. J Plankton Res, 2008, 30: 275-281.
[18]  张武昌, 王荣. 饵料浓度对中华哲水蚤摄食的影响[J]. 海洋学报, 2000, 22(6): 88-94.
[19]  Taylor A H, Lllen J I, Clark P A. Extraction of a weak climatic signal by an ecosystem[J]. Nature, 2002, 416: 629-632.
[20]  Atkinson A, Siegel V, Pakhomov E, et al. Long-term decline in krill stock and increase in salps within the Southern Ocean[J]. Nature, 2004, 432: 100-103.
[21]  Alheit J, Niquen M. Regime shifts in the Humboldt Current ecosystem[J]. Prog Oceanogr, 2004, 60: 201-222.
[22]  Roemmich D, McGowan J. Climate warming and the decline of zooplankton in the California Current[J]. Science, 1995, 268: 352-353.
[23]  Greve W, Lange U, Reiners F. Predicating the seasonality of North Sea zooplankton[J]. Senckenbergiana Maritima, 2001, 31: 263-268.
[24]  Mackas D L, Goldblatt R, Lewis A G. Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific[J]. Can J Fish Aquat Sci, 1998, 55: 1878-1893.
[25]  Duarte C M, Cerbrian J, Marba N. Uncertainty of detecting sea change[J]. Nature, 1992, 356: 190.
[26]  Helaouet P, Beaugrand G. Macoecology of Calanus fimarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas[J]. Mar Ecol Prog Ser, 2007, 345: 147-165.
[27]  P?rtner H O. Climate variability and the energetic pathwaysof evolution: the origin of endothermy in mammals and birds[J]. Physiol Biochem Zool, 2004, 77:959-981.
[28]  Stenseth N C, Mysterud A, Ottersen G, et al. Ecological effects of climate fluctuations[J]. Science, 2002, 297: 1292-1296.
[29]  Richard D B, Mills C E, Overland J E, et al. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change[J]. Fish Oceanogr, 1999, 8: 296-306.
[30]  Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep-Sea Res Ⅱ, 1998, 45: 517-567.
[31]  Gollner S, Fontaneto D, Arbiz P M. Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges[J]. Mar Biol, 2011, 158: 221-231.
[32]  Gislason A, Silva T. Comparison between automated analysis of zooplankton using ZooImage and traditional methodology[J]. J Plankton Res, 2009, 31: 1505-1516.
[33]  Morozov A, Arashkevich E. Patterns of zooplankton functional response in communities with vertical heterogeneity: a model study[J]. Math Model Nat Phenom, 2008, 3(3): 131-148.
[34]  Mcmanus G B, Katz L A. Molecular and morphological methods for identifying plankton: what makes a successful marriage[J]. J Plankton Res, 2009, 31: 1119-1129.
[35]  Wang R, Zou T, Wang K. The Yellow Sea cold bottom water an oversummering site for Calanus sinicus (Copepods, Crustacea)[J]. J Plankton Res, 2003, 25(2): 169-183
[36]  李云, 徐兆礼, 高倩. 长江口强壮箭虫和肥胖箭虫的丰度变化对环境变暖的响应[J]. 生态学报, 2009, 29(9): 4773-4780.
[37]  周进,徐兆礼,马增玲.长江口拟长脚数量变化和对环境变暖的响应[J].生态学报,2009,29(11):5758-5765.
[38]  孙军, 刘东艳, 王宗灵. 浮游动物摄食在赤潮生消过程中的作用[J]. 生态学报, 2004, 24 (7): 1514-1522.
[39]  曾祥波, 黄邦钦. 台湾海峡南部夏季微型浮游动物对浮游植物的摄食压力及其生产力[J]. 台湾海峡, 2006, 25(1): 1-9.
[40]  Zhang L Q, Wang G T, Yao W J, et al. Molecular systematic of medusa in the genus Craspedacusta (Cnidaria: Hydrozoa: Limnomedusae) in China with the reference to the identity of species[J]. J Plankton Res, 2009, 31(5): 563-570.
[41]  孙松. 中国区域海洋学——生物海洋学[M]. 北京:海洋出版社, 2012.
[42]  陈钢, 李少菁, 黄加祺. 台湾海峡两种优势种浮游桡足类动物中华哲水蚤和强真哲水蚤的摄食研究[C]//中国海洋学文集第7集. 北京:海洋出版社, 1997: 196-203.
[43]  孙松. 黄海中华哲水蚤度夏机制初探[J]. 海洋与湖沼, 浮游动物研究专辑, 2002: 92-99.
[44]  王春生, 陈兴群, 刘镇盛. 我国近海海洋生物与生态[M]. 北京: 海洋出版社, 2013.
[45]  Mu D, Tao J, Shi Y, et al. A Numerical Model study on the Ecological Impacts of Coastal Reclamation in Bohai Bay[J]. Energy Procedia, 2011, 11: 3785-3791.
[46]  Li L Y, Lin D, Chen J H, et al. Diversity and distribution of planktonic protists in the northern south China Sea[J]. J Plankton Res, 2011, 33 (3): 445-456.
[47]  Gao S, Hu X, Chen Z, et al. Characteriztion of marine microzooplankton communities of Qingdao coastal areas using randomly amplified polymorphic DNA (RAPD)[J]. Acta Oceanol Sin, 2009, 28(1): 55-61.
[48]  Pershing A J, Head E J H, Greene C H, et al. Pattern and scale of variability among Northwest Atlantic Shelf plankton communities[J]. J Plankton Res, 2010, 32: 1661-1674.
[49]  Record N R, Pershing A J, Jossi J W. Biodiversity as a dynamic variable in the gulf of Maine continuous plankton recorder transect[J]. J Plankton Res, 2010, 32: 1675-1684.
[50]  Patrician M R, Kenney R D. Using the continuous Plankton Recoder to investigate the absence of North Atlantic right whales (Eubalaena glacialis) from the Roseway Basin foraging ground[J]. J Plankton Res, 2010, 32: 1685-1695.
[51]  Marques S C, Azeiteiro U M, Martinho F, et al. Evaluation of estuarine mesozooplankton dynamics at a fine temporal scale: the role of seasonal, lunar and diel cycles[J]. J Plankton Res, 2009, 31: 1249-1263.
[52]  Peterson C R, Allen C R, Holling C S. Ecological resilience, biodiversity and scale[J]. Ecosystem, 1998, 1: 6-18.
[53]  Soussi A, Souissi S, Devreker D, et al. Occurrence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France)[J]. Mar Biol, 2010, 157: 851-861.
[54]  Landry M R, Hassett P R. Estimating the grazing impact of marine microzooplankton[J]. Mar Biol, 1982, 67: 283-288.
[55]  Gorokhova E, Engstrom-Ost J. Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers[J]. J Plankton Res, 2009, 31: 1235-1247.
[56]  Hays G C, Harris R P, Head R N. Dial change in the near-surface biomass of zooplankton and the carbon content of vertical migrants[J]. Deep-Sea Res Ⅱ, 2001, 48: 1063-1068.
[57]  Ohman M D, Frost B W, Cohen E B. Reverse diel vertical migration: an escape from invertebrate predators[J]. Science, 1983, 220: 1404-1407.
[58]  刘镇盛. 用选择抑制剂技术评价近岸表层水异养微型浮游生物对聚球藻的摄食压力[J]. 东海海洋, 1990, 31: 49-54.
[59]  Lynam C P, Hay S J, Brierley A S. Interannual in abundance of North Sea jellyfish and links to the North Atlantic Oscillation[J]. Limnol Oceanogr, 2004, 49(3): 637-643.
[60]  Lindley J A, Batten S D. Long-term variability in the diversity of North Sea zooplankton[J]. J Mar Biol Ass U.K., 2002, 82: 31-40.
[61]  Edwards M, Richardson A. Impact of climate change on marine pelagic phenology and trophic mismatch[J]. Nature, 2004, 430: 881-884.
[62]  Nelson R J, Carmack E C, McLaughlin F A, et al. Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics[J]. Mar Ecol Prog Ser, 2009, 381: 129-138.
[63]  Lancraft T M, Relsenbichler K R, Robison B H, et al. A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctic with an estimate of fish predation[J]. Deep-Sea Res Ⅱ, 2004, 51: 2247-2260.
[64]  Decker M B, Breitburg D L, Purcell J E. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi[J]. Mar Ecol Prog Ser, 2004, 280: 163-172.
[65]  Cowles T J, Desiderio R A, Carr M E. Small-scale planktonic structure: persistence and trophic consequences[J]. Oceanography, 1998, 6: 105-111.
[66]  Erhan Mutlu. Compared Studies on Recognition of Marine Underwater Biological Scattering Layers[J]. J Biol Sci, 2007, 1(3): 113-119.
[67]  Gentlman W. A chronology of planton dynamics in silico: how cmputer models have been used to study marine ecosystem[J]. Hydrobiologia, 2002, 480: 69-85.
[68]  Speirs D C, Gurney W S C, Heath M R, et al. Ocean-scale modeling of the distribution, abundance, and seasonal dynamics of the copepod Calanus flnmarchicus [J]. Mar Ecol Prog Ser, 2006, 313: 173-192.
[69]  Stromberg K H P, Smyth T J, Allen J I, et al. Estimation of Global zooplankton biomass from satellite ocean color[J]. J Mar System, 2009, 78: 18-27.
[70]  Cropp R, Norbury J. Parameterizing plankton functional type models: insights from a dynamical systems perspective[J]. J Plankton Res, 2009, 9: 939-963.
[71]  Culverhouse P F, Williams R, Benfield M, et al. Automatic image analysis of plankton: future perspective[J]. Mar Ecol Prog Ser, 2006, 312: 297-309.
[72]  Bucklin A, LaJeunesse T C, Curry E, et al. Molecular diversity of the copepod, Nannocalanus minor: Genetic evidence of species and population structure in the North Atlantic Ocean[J]. J Mar Res, 1996, 54: 285-310.
[73]  郑重, 李少菁, 许振祖. 海洋浮游生物学[M]. 北京: 海洋出版社, 1984.
[74]  陈清潮, 章淑珍. 黄海和东海浮游桡足类:Ⅰ. 哲水蚤目[J]. 海洋科学集刊, 1965, 7: 20-131.
[75]  黄备, 吴健平, 唐静亮, 等. 杭州湾浮游动物群落与水团的相关性研究[J]. 海洋学报, 2010, 32(1): 170-175.
[76]  李超伦, 孙松, 吉鹏, 等. 南极普利兹湾边缘浮冰区微型浮游动物的摄食及其氮的排泄[J]. 海洋与湖沼, 2000, 31(6): 657-663.
[77]  Wang R, Li C, Wang K, et al. Feeding activities of zooplankton in the Bohai Sea[J]. Fisheries Oceanography, 1998, 7: 265-271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133