Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416: 389-395.
[3]
Nikitin A N. Vertical distribution of plankton in the Black Sea. Proc. Sp. zool. Lab. and Sevast[J]. Biol St AcSci(in Russian), 1926, 2(9): 93-140.
[4]
Sydeman W J, Thompson S A, Santora J A, et al. Macro-ecology of plankton-seabird associations in the North Pacific Ocean[J]. J Plankton Res, 2010, 32: 1697-1713.
[5]
Turner J T. The importance of small planktonic copepods and their roles in pelagic marine food webs[J]. Zool Stud, 2004, 43: 255-266.
[6]
Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405: 220-227.
[7]
Park G S, Marshall H G. Estuary relationships between zooplankton community structure and trophic gradients[J]. J Plankton Res, 2000, 22: 121-135.
[8]
Tittensor D P, Mora C, Jetz W, et al. Global patterns and predictors of marine biodiversity across taxa[J]. Nature, 2010, 466: 1098-1101.
[9]
Heath M R, Backhaus J O, Richardson K, et al. Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus [J]. Fish Oceanogr, 1999, 8: 163-176.
[10]
Beaugrand G, Reid P C, Ibanez F, et al. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate[J]. Science, 2002, 296: 1692-1694.
[11]
Manriquez K, Escribano R, Hidalgo P. The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern chile as assessed by automated image analysis[J]. J Plankton Res, 2009, 31: 1075-1088.
[12]
Aguiar M A M, Baranger M, Baptestini E M, et al. Global patterns of speciation and diversity[J]. Nature, 2009, 460: 384-387.
[13]
Raskoff K A, Sommer F A, Hamner W M, et al. Collection and culture techniques for gelatinous zooplankton[J]. Biol Bull, 2003, 204: 68-80.
[14]
Bertram D F, Harfenist A, Hedd A. Seabird nestling diets reflect latitudinal temperature-dependent variation in availability of key zooplankton prey populations[J]. Mar Ecol Prog Ser, 2009, 393: 199-210.
[15]
Poleck T P, Denys C J. Effect of temperature on the molting, growth and maturation of the antarctic krill Euphausia superb (Crustacea: Euphausiacea) under laboratory conditions[J]. Mar Biol, 1982, 70: 255-265.
[16]
David J A, Stuart A W. Changing sex at the same relative body size[J]. Nature, 2003, 783-784.
[17]
Ide K, Takahashi K, Kuwata A, et al. A rapid analysis of copepod feeding using Flow CAM[J]. J Plankton Res, 2008, 30: 275-281.
Taylor A H, Lllen J I, Clark P A. Extraction of a weak climatic signal by an ecosystem[J]. Nature, 2002, 416: 629-632.
[20]
Atkinson A, Siegel V, Pakhomov E, et al. Long-term decline in krill stock and increase in salps within the Southern Ocean[J]. Nature, 2004, 432: 100-103.
[21]
Alheit J, Niquen M. Regime shifts in the Humboldt Current ecosystem[J]. Prog Oceanogr, 2004, 60: 201-222.
[22]
Roemmich D, McGowan J. Climate warming and the decline of zooplankton in the California Current[J]. Science, 1995, 268: 352-353.
[23]
Greve W, Lange U, Reiners F. Predicating the seasonality of North Sea zooplankton[J]. Senckenbergiana Maritima, 2001, 31: 263-268.
[24]
Mackas D L, Goldblatt R, Lewis A G. Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific[J]. Can J Fish Aquat Sci, 1998, 55: 1878-1893.
[25]
Duarte C M, Cerbrian J, Marba N. Uncertainty of detecting sea change[J]. Nature, 1992, 356: 190.
[26]
Helaouet P, Beaugrand G. Macoecology of Calanus fimarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas[J]. Mar Ecol Prog Ser, 2007, 345: 147-165.
[27]
P?rtner H O. Climate variability and the energetic pathwaysof evolution: the origin of endothermy in mammals and birds[J]. Physiol Biochem Zool, 2004, 77:959-981.
[28]
Stenseth N C, Mysterud A, Ottersen G, et al. Ecological effects of climate fluctuations[J]. Science, 2002, 297: 1292-1296.
[29]
Richard D B, Mills C E, Overland J E, et al. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change[J]. Fish Oceanogr, 1999, 8: 296-306.
[30]
Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep-Sea Res Ⅱ, 1998, 45: 517-567.
[31]
Gollner S, Fontaneto D, Arbiz P M. Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges[J]. Mar Biol, 2011, 158: 221-231.
[32]
Gislason A, Silva T. Comparison between automated analysis of zooplankton using ZooImage and traditional methodology[J]. J Plankton Res, 2009, 31: 1505-1516.
[33]
Morozov A, Arashkevich E. Patterns of zooplankton functional response in communities with vertical heterogeneity: a model study[J]. Math Model Nat Phenom, 2008, 3(3): 131-148.
[34]
Mcmanus G B, Katz L A. Molecular and morphological methods for identifying plankton: what makes a successful marriage[J]. J Plankton Res, 2009, 31: 1119-1129.
[35]
Wang R, Zou T, Wang K. The Yellow Sea cold bottom water an oversummering site for Calanus sinicus (Copepods, Crustacea)[J]. J Plankton Res, 2003, 25(2): 169-183
Zhang L Q, Wang G T, Yao W J, et al. Molecular systematic of medusa in the genus Craspedacusta (Cnidaria: Hydrozoa: Limnomedusae) in China with the reference to the identity of species[J]. J Plankton Res, 2009, 31(5): 563-570.
Mu D, Tao J, Shi Y, et al. A Numerical Model study on the Ecological Impacts of Coastal Reclamation in Bohai Bay[J]. Energy Procedia, 2011, 11: 3785-3791.
[46]
Li L Y, Lin D, Chen J H, et al. Diversity and distribution of planktonic protists in the northern south China Sea[J]. J Plankton Res, 2011, 33 (3): 445-456.
[47]
Gao S, Hu X, Chen Z, et al. Characteriztion of marine microzooplankton communities of Qingdao coastal areas using randomly amplified polymorphic DNA (RAPD)[J]. Acta Oceanol Sin, 2009, 28(1): 55-61.
[48]
Pershing A J, Head E J H, Greene C H, et al. Pattern and scale of variability among Northwest Atlantic Shelf plankton communities[J]. J Plankton Res, 2010, 32: 1661-1674.
[49]
Record N R, Pershing A J, Jossi J W. Biodiversity as a dynamic variable in the gulf of Maine continuous plankton recorder transect[J]. J Plankton Res, 2010, 32: 1675-1684.
[50]
Patrician M R, Kenney R D. Using the continuous Plankton Recoder to investigate the absence of North Atlantic right whales (Eubalaena glacialis) from the Roseway Basin foraging ground[J]. J Plankton Res, 2010, 32: 1685-1695.
[51]
Marques S C, Azeiteiro U M, Martinho F, et al. Evaluation of estuarine mesozooplankton dynamics at a fine temporal scale: the role of seasonal, lunar and diel cycles[J]. J Plankton Res, 2009, 31: 1249-1263.
[52]
Peterson C R, Allen C R, Holling C S. Ecological resilience, biodiversity and scale[J]. Ecosystem, 1998, 1: 6-18.
[53]
Soussi A, Souissi S, Devreker D, et al. Occurrence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France)[J]. Mar Biol, 2010, 157: 851-861.
[54]
Landry M R, Hassett P R. Estimating the grazing impact of marine microzooplankton[J]. Mar Biol, 1982, 67: 283-288.
[55]
Gorokhova E, Engstrom-Ost J. Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers[J]. J Plankton Res, 2009, 31: 1235-1247.
[56]
Hays G C, Harris R P, Head R N. Dial change in the near-surface biomass of zooplankton and the carbon content of vertical migrants[J]. Deep-Sea Res Ⅱ, 2001, 48: 1063-1068.
[57]
Ohman M D, Frost B W, Cohen E B. Reverse diel vertical migration: an escape from invertebrate predators[J]. Science, 1983, 220: 1404-1407.
Lynam C P, Hay S J, Brierley A S. Interannual in abundance of North Sea jellyfish and links to the North Atlantic Oscillation[J]. Limnol Oceanogr, 2004, 49(3): 637-643.
[60]
Lindley J A, Batten S D. Long-term variability in the diversity of North Sea zooplankton[J]. J Mar Biol Ass U.K., 2002, 82: 31-40.
[61]
Edwards M, Richardson A. Impact of climate change on marine pelagic phenology and trophic mismatch[J]. Nature, 2004, 430: 881-884.
[62]
Nelson R J, Carmack E C, McLaughlin F A, et al. Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics[J]. Mar Ecol Prog Ser, 2009, 381: 129-138.
[63]
Lancraft T M, Relsenbichler K R, Robison B H, et al. A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctic with an estimate of fish predation[J]. Deep-Sea Res Ⅱ, 2004, 51: 2247-2260.
[64]
Decker M B, Breitburg D L, Purcell J E. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi[J]. Mar Ecol Prog Ser, 2004, 280: 163-172.
[65]
Cowles T J, Desiderio R A, Carr M E. Small-scale planktonic structure: persistence and trophic consequences[J]. Oceanography, 1998, 6: 105-111.
[66]
Erhan Mutlu. Compared Studies on Recognition of Marine Underwater Biological Scattering Layers[J]. J Biol Sci, 2007, 1(3): 113-119.
[67]
Gentlman W. A chronology of planton dynamics in silico: how cmputer models have been used to study marine ecosystem[J]. Hydrobiologia, 2002, 480: 69-85.
[68]
Speirs D C, Gurney W S C, Heath M R, et al. Ocean-scale modeling of the distribution, abundance, and seasonal dynamics of the copepod Calanus flnmarchicus [J]. Mar Ecol Prog Ser, 2006, 313: 173-192.
[69]
Stromberg K H P, Smyth T J, Allen J I, et al. Estimation of Global zooplankton biomass from satellite ocean color[J]. J Mar System, 2009, 78: 18-27.
[70]
Cropp R, Norbury J. Parameterizing plankton functional type models: insights from a dynamical systems perspective[J]. J Plankton Res, 2009, 9: 939-963.
[71]
Culverhouse P F, Williams R, Benfield M, et al. Automatic image analysis of plankton: future perspective[J]. Mar Ecol Prog Ser, 2006, 312: 297-309.
[72]
Bucklin A, LaJeunesse T C, Curry E, et al. Molecular diversity of the copepod, Nannocalanus minor: Genetic evidence of species and population structure in the North Atlantic Ocean[J]. J Mar Res, 1996, 54: 285-310.