All Title Author
Keywords Abstract

环境化学  2015 

荧蒽的淡水沉积物预测无效应浓度推导及生态风险评价

Keywords: 预测无效应浓度,荧蒽,生态风险,沉积物

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于我国本土淡水水生生物的毒性数据,采用平衡分配法,推导了荧蒽的淡水PNECsed(沉积物环境预测无效应浓度)为551.0μg·kg-1.结合获得的PNECsed,采用商值法,评价了我国主要河流沉积物中荧蒽的生态风险.结果表明,各河流沉积物中荧蒽的RQ平均值(风险商平均值)均小于1,生态风险大小依次为辽河>松花江>淮河>海河>黄河>珠江>长江.研究结果可以为荧蒽的风险管理提供技术支持.

References

[1]  Bushek D, Heidenreich M, Porter D. The effects of several common anthropogenic contaminants on proliferation of the parasitic oyster pathogen perkinsus marinus[J]. Marine Environmental Research, 2007, 64(4): 535-540
[2]  Stewart K M, Thompson R S. Fluoranthene as a model toxicant in sediment studies with Chironomus riparius[J]. Journal of Aquatic Ecosystem Health, 1995, 4(4): 231-238
[3]  EC. European union risk assessment report coal-tar pitch, high temperature[R]. Italy: European Communities,2008
[4]  罗雪梅,刘昌明,何孟常. 黄河沉积物中多环芳烃的分布特征及来源分析[J]. 环境科学研究, 2005,18(2): 48-50
[5]  Sun J H, Wang G L, Chai Y, et al. Distribution of polucuclic aromatic hydrocarbons (PAHs) in Henan Reach of th Yellow Riber, Middle China[J]. Ecotoxicology and Environmental Safety, 2009,72(5): 1614-1624
[6]  周俊丽,刘征涛,孟伟,等. 长江河口表层沉积物中PAHs的生态风险评价[J]. 环境科学研究, 2009,22(7): 778-783
[7]  王波,李正炎,傅明珠,等. 长江口及其邻近海域表层沉积物中多环芳烃的分布和生态风险评价[J]. 中国海洋大学学报, 2007,37(sup.): 83-87
[8]  武江越. 辽河流域水体及表层沉积物中多环芳烃分布特征及风险评估[D]. 北京: 北京化工大学硕士学位论文, 2012
[9]  Mai B X, Fu J M,Sheng G Y, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta,China[J]. Environmental Pollution, 2002,117(3): 457-474
[10]  Luo X J, Chen S J, Mai B X, et al. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China[J]. Environmental Pollution, 2006, 139(1): 9-20
[11]  彭欢,杨毅,刘敏,等. 淮南-蚌埠段淮河流域沉积物中PAHs的分布及来源辨析[J]. 环境科学, 2010,31(5): 1192-1197
[12]  聂海峰,李括,彭敏,等. 松花江底积物中多环芳烃生态风险评价[J]. 中国地质,2011,38(4): 1102-1110
[13]  范丽丽. 松花江流域底泥沉积物中多氯联苯和多环芳烃的研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2007
[14]  刘丰,刘静玲,陈秋颖,等. 海河南系表层沉积物中多环芳烃的污染特征与生态风险评价[J]. 科学通报, 2013,58(12): 1109-1116
[15]  Zeng L, Zeng S, Dong X, et al. Probabilistic ecological risk assessment of polycyclic aromatic hydrocarbons in southwestern catchments of the Bohai Sea, China[J]. Ecotoxicology, 2013, 22(8): 1221-1231
[16]  OECD. Report of the OECD workshop on extrapolation of laboratory aquatic toxicity data to the real environment[R]. Paris: OECD,1992
[17]  Warne M S J. Derivation of the Australian and New Zealand water quality guidelines for toxicants[J]. Australasian Journal of Ecotoxicology, 2002, 7(2): 123-136
[18]  Sadiq R, Husain T, Veitch B, et al. Distribution of arsenic and copper in sediment pore water: An ecological risk assessment case study for offshore drilling waste discharges[J]. Risk analysis, 2003, 23(6): 1309-1321
[19]  Ahmed R Z, Ahmed N. Effect of yeast extract on fluoranthene degradation and aromatic ring dioxygenase expressing bacterial community structure of a fluoranthene degrading bacterial consortium[J]. International Biodeterioration & Biodegradation, 2014,88: 56-61
[20]  周文敏,傅徳黔,孙崇光. 中国水中优先控制污染物黑名单的确定[J]. 环境科学研究, 1991,4(6): 9-12
[21]  周俊丽,李霁,刘征涛. 长江河口沉积物柱状样中多环芳烃沉积记录分析[J]. 环境化学,2013,32(6): 1098-1099
[22]  He X R, Pang Y, Song X J, et al. Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China[J]. Marine Pollution Bulletin, 2014,80(1/2): 52-58
[23]  Chen H Y, Teng Y G, Wang J S, et al. Source apportionment of sediment PAHs in the Pearl River Delta region (China) using nonnegative matrix factorization analysis with effective weighted variance solution[J]. Science of The Total Environment, 2013,444(1): 401-408
[24]  武江越,刘征涛,冯流,等. 辽河水体中多环芳烃的分布特征及风险评估[J]. 环境化学, 2012,31(7): 1116-1117
[25]  EC. Technical guidance document on risk assessment[R]. Italy: Institute for Health and Consumer Protection, European Communities, 2003
[26]  Lepper P. Manual of the methodological framework used to derive quality standards for priority substances of the water framework directive[R]. Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology, 2004
[27]  张亚辉,曹莹,周腾耀,等. 我国环境中PFOS的预测无效应浓度[J]. 中国环境科学, 2013,33(9): 1670-1677
[28]  雷炳莉,文育,王艺陪,等. 不同评估方法得出的五氯酚的PNEC值的比较研究[J]. 环境科学, 2013,34(6): 2335-2343
[29]  US EPA. ECOTOX database[eb/ol]. [2013-7-29]. http: //cfpub.epa.gov/ecotox
[30]  王印,王军军,秦宁,等. 应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险[J]. 环境科学学报, 2009,29(11): 2407-2414
[31]  Yang Z G, Zhang Z S, Wang H, et al.Development of aquatic life criteria for nitrobenzene in China[J]. Environment Pollution, 2012,162: 86-90
[32]  Jin X W, Zha J M, Xu Y P, et al. Derivation of aquatic predicted no-effect concentration(PNEC)for 2,4-dichlorophenol: Comparing native species data with non-native species data[J]. Chemosphere, 2011,84(10): 1506-1511
[33]  Yang S W, Yan Z G, Xu F F, et al. Development of freshwater aquatic life criteria for Tetrbromobisphenol A in China[J]. Environment Pollution, 2012,169: 59-63
[34]  Wu B, Zhang R, Cheng S P, et al. Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems[J]. Ecotoxicology, 2011,20: 1124-1130
[35]  Okkerman P C, Plassche E J V D, Slooff W, et al. Ecotoxicological effects assessment: A comparison of several extrapolation procedures[J]. Ecotoxicology and Environmental Safety, 1991,21(2): 182-193
[36]  Van der kooij L A,Van de meent D,Van leeuwen C J,et al. Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards: Application of the equilibrium partitioning method[J]. Water Research,1991, 25(6): 679-705
[37]  US EPA. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Washington D C: US EPA,1985
[38]  李霁,刘征涛,刘秀华,等. 菲的淡水沉积物环境预测无效应浓度推导[J]. 环境科学研究, 2014,27(7): 790-796
[39]  Gendusa T C. Toxicity of chromium and fluoranthene from aqueous and sediment sources to selected freshwater fish[D]. Denton: University of North Texas, 1990
[40]  Spehar R L, Poucher S, Brooke L T, et al. Comparative toxicity of fluoranthene to freshwater and saltwater species under fluorescent and ultraviolet light[J]. Archives of Environmental Contamination and Toxicology, 1999, 37(4): 496-502
[41]  Brooke L T. Acute and chronic toxicity of nonylphenol to ten species of aquatic organisms[R]. Washington D C: US EPA,1993
[42]  Horne J D, Sirsky M A, Hollister T A, et al. Aquatic toxicity studies of five priority pollutants[M]. Houston: NUS Corp,1982
[43]  Borovsky D, Linley J R, Kagan J. Polycyclic aromatic compounds as phototoxic mosquito larvicides[J]. Journal of the American Mosquito Control Association, 1987, 3(2): 246-250
[44]  Turner L W. Acute toxicity of selected chemicals to fathead minnow, water flea and mysid shrimp under static and flow-through test conditions[R]. Washington D C: US EPA,1982
[45]  Oris J T, Winner R W, Moore M V. A four-day survival and reproduction toxicity test for ceriodaphnia dubia[J]. Environmental Toxicology and Chemistry, 1991, 10(2): 217-224
[46]  Suedel B C, Rodgers, Jr J H. Toxicity of fluoranthene to Daphnia magna, Hyalella azteca, Chironomus tentans, and Stylaria lacustris in water-only and whole sediment exposures[J]. Bulletin of Environmental Contamination and Toxicology, 1996, 57(1): 132-138
[47]  US EPA. In-depth studies on Health and Environmental Impacts of Selected Water Pollutants[R]. Washington D C: US EPA,1978
[48]  Walker S E, Taylor D H, Oris J T. Behavioral and histopathological effects of fluoranthene on bullfrog larvae (Rana catesbeiana)[J]. Environmental Toxicology and Chemistry, 1998, 17(4): 734-739

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal