All Title Author
Keywords Abstract


同轴电纺法制备纳米空心碳纤维

DOI: 10.13336/j.1003-6520.hve.2015.02.007, PP. 403-409

Keywords: 电纺丝,同轴电纺,同轴复合纤维,空心碳纤维,晶体结构,聚酰亚胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

高压静电纺丝的基本原理是高分子溶液在静电力的作用下产生弯曲失稳而被拉伸形成微纳米纤维。同轴电纺技术是对常规静电纺丝的改进,可用于制备复合或空心微纳米纤维。为制备纳米空心碳纤维,利用同轴电纺法进行了实验,讨论了溶液质量分数、界面张力等对纤维形貌的影响,表征了核-壳空心结构对碳纤维晶体结构的影响。实验结果表明较高的壳溶液质量分数以及壳溶液与核溶液之间较低的界面张力有利于电纺过程中同轴复合纤维的形成;获得的空心碳纤维的晶体结构与传统实心碳纤维相比无明显差异。

References

[1]  Yang Y, Jia Z D, Li Q, et al . Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution[J]. IEEE Transactions on Dielectrics and Electrical insulation, 2006, 13(3): 580-585.
[2]  Yang Y, Jia Z D, Li Q, et al . Controlled deposition of electrospinning jet via electric field distribution affected by insulator[J]. IEEE Transactions on Dielectrics and Electrical insulation, 2008, 15(1): 269-276.
[3]  Yang Y, Jia Z D, Liu J N, et al . Effect of electric field distribution uniformity on electrospinning[J]. Journal of Applied Physics, 2008, 103(10): 104307.
[4]  Reneker D H, Yarin A, Fong H, et al . Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547.
[5]  He J H, Liu H M. Variational approach to nonlinear problems and a review on mathematical model of electrospinning[J]. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63(5/7): 919-929.
[6]  Carroll C P, Joo Y L. Electrospinning of viscpelastic boger fluids: modeling and experiments[J]. Physics of Fluids, 2006, 18(53): 53102-53115.
[7]  Li D, Mccann J T, Xia Y N. Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes[J]. Journal of the American Ceramic Society, 2006, 89(6):1861-1869.
[8]  Huang Z M, Zhang Y Z, Kotaki M, et al . A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2006, 63(15): 2223-2253.
[9]  Chronakis I. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process- a review[J]. Journal of Materials Processing Technology, 2005, 167(2/3): 283-293.
[10]  Rutledge G C, Fridrikh S V. Formation of fibers by electrospinning[J]. Advanced Drug Delivery Reviews. 2007, 59(14):1384-1391.
[11]  Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters, 2004, 4(5): 933-938.
[12]  McCann J T, Li D, Xia Y N. Electrospinning of nanofibers with core-shealth, hollow, or porous structures[J]. Journal of Materials Chemistry, 2005, 15(7): 735-738.
[13]  Li D, McCann J T,Xia Y N. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces[J]. Small, 2005, 1(1): 83-86.
[14]  Zhan S H, Chen D R, Jiao X L, et al . Long TiO 2 hollow fibers with mesporous walls: sol-gel combined electrospun fabrication and photocatalytic properties[J]. Journal of Physical Chemistry B, 2006, 110(11): 11199-11204.
[15]  Zhan S H, Chen D R, Jiao X L, et al . Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe 2 O 3 hollow fibers using sol-gel combined co-electrospinning technology[J]. Journal of Colloid and Interface Science, 2007, 308(1): 265-270.
[16]  Zussman E, Yarin A L, Bazilevsky A V, et al . Electrospun polyacrylonitrile/poly (methyl methacrylate) - derived turbostratic carbon micro-/ nanotubes[J]. Advanced Materials, 2006, 18(3): 348-353.
[17]  Bae C, Yoo H, Kim S, et al . Template-directed synthesis of oxide nanotubes: fabrication, characterization and applications[J]. Chemistry of Materials, 2008, 20(3): 756-767.
[18]  Chen Y Y, Yu B Y, Wang J H, et al . Template-based fabrication of SrTiO 3 and BaTiO 3 nanotubes[J]. Inorganic Chemistry, 2009, 48(2): 681-686.
[19]  Chuang G S, Jo S M, Kim B C. Properties of carbon nanofibers prepared from electrospun polyimide[J]. Journal of Applied Polymer Science 2005, 97(1): 165-170.
[20]  Yang K S, Edie D D, Lim D Y, et al . Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly (amic acid) solution[J]. Carbon, 2003, 41(11): 2039-2046.
[21]  Endo M, Kim Y A, Hong S H, et al . Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis[J]. Carbon, 2001, 39(13): 2003-2011.
[22]  Feng J J. The stretching of an electrified non-Newtonian jet: a model for electrospinning[J]. Physics of Fluid, 2002, 14(11): 3912-4006.
[23]  Li D, Xia Y N. Electrospinning of nanofibers: reinventing the wheel?[J]. Advanced Materials, 2006, 16(14): 1151-1170.
[24]  杨 颖,贾志东,李 强,等. 电纺丝技术及其应用[J]. 高电压技术,2006,32(11):91-95. YANG Ying, JIA Zhidong, LI Qiang, et al . Electrospinning and its applications[J]. High Voltage Engineering, 2006, 32(11): 91-95.
[25]  杨 颖,贾志东,关志成. 电纺丝PEO nm纤维过程参数的试验研究[J]. 高电压技术,2006,33(2):186-189. YANG Ying, JIA Zhidong, GUAN Zhicheng. Experimental investigation of the effect of processing parameters on the formation of electrospun polyethylene oxide nanofibers[J]. High Voltage Engineering, 2006, 33(2): 186-189.
[26]  Wang M, Jing N, Su B C. Electrospinning of silica nanochannels for single molecule detection[J]. Journal of Applied Physics Letters, 2006, 88(3):033106.
[27]  Moghe A K, Gupta B S. Coaxial electrospinning for nanofiber structures: preparation and applications[J]. Polymer Reviews, 2008, 48(2): 353-377.
[28]  Popov V N. Carbon nanotubes: properties and application[J]. Materials Science and Engineering, 2004, 43(3): 61-102.
[29]  Richard C, Balavoine F, Schultz P, et al . Supramolecular self-assembly of liquid derivatives on carbon nanotubes[J]. Science, 2003, 300: 775-778.
[30]  Remskar M, Mrzel A, Skraba Z, et al . Self-assembly of subnanometer-diameter single-wall MoS 2 nanotubes[J]. Science, 2001, 292: 478-481.
[31]  Schlittler R R, Seo J W, Gimzewski J K, et al . Single crystals of single-walled carbon nanotubes formed by self-assembly[J]. Science, 2001, 292: 1136-1139.

Full-Text

comments powered by Disqus