All Title Author
Keywords Abstract


生物炭对京郊沙化地土壤性质和苜蓿生长、养分吸收的影响

DOI: 10.11654/jaes.2015.05.013, PP. 904-912

Keywords: 生物炭,苜蓿,沙化,容重,田间持水量,有机碳,,有效性

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过田间试验研究了施用生物炭(14t·hm-2)和种植苜蓿对京郊沙化地的改良作用。试验设裸地(BL)、裸地添加生物炭(BLB)、种植苜蓿不加生物炭(A)和种植苜蓿添加生物炭(AB)四个处理。结果表明:添加生物炭使土壤容重显着减小11.5%~11.6%,pH值显着增加0.1~0.2个单位,田间持水量和总孔隙度分别增加9.1%~10.3%和7.6%~11.3%,土壤总氮、有机碳含量和氮、磷、钾、锌的有效含量分别增加10.3%~25.8%、52.8%~71.7%、12.7%~23.5%、141.7%~233.3%、47.7%~81.1%、94.2%~95.2%,有效铁含量最高减小29.1%,阳离子代换量(CEC)和钙、镁、锰、硼的有效含量无显着变化;种植苜蓿没有显着影响土壤pH值、容重、总孔隙度、田间持水量、CEC和氮、钙、镁、锌、硼的有效性,总体上显着减小了土壤含水量和总氮、速效磷、速效钾的含量,增加了铁和锰的有效含量。BLB处理土壤含水量比BL显着增加13.9%(P<0.05);添加生物炭使苜蓿地上部生物量、含水量和氮、磷、钾、钙、镁、铁、锌、锰、硼的吸收累积量分别显着增加91.1%、3.6%、110.0%、130.9%、200.4%、82.6%、44.8%、89.5%、102.7%、99.5%、104.7%.生物炭与苜蓿种植相结合可在短期内改善京郊沙化地土壤的理化性质、提高养分有效性和恢复植被。

References

[1]  Gueerena D, Lehmann J, Hanley K, et al. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system[J]. Plant and Soil, 2013, 365(1-2):239-254.
[2]  Perry L G, Blumenthal D M, Monaco T A, et al. Immobilizing nitrogen to control plant invasion[J]. Oecologia, 2010, 163(1):13-24.
[3]  Wang J, Pan X, Liu Y, et al. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and Soil, 2012, 360(1-2):287-298.
[4]  Voorde T F J v d, Bezemer T M, Groenigen J W V, et al. Soil biochar amendment in a nature restoration area:Effects on plant productivity and community composition[J]. Ecological Applications, 2014, 24(5):1167-1177.
[5]  Kloss S, Zehetner F, Wimmer B, et al. Biochar application to temperate soils:Effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):3-15.
[6]  Xu G, Sun J, Shao H, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62:54-60.
[7]  Chintala R, Schumacher T E, McDonald L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean-Soil Air Water, 2014, 42(5):626-634.
[8]  Cui H J, Wang M K, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar[J]. Journal of Soils and Sediments, 2011, 11(7):1135-1141.
[9]  Zwieten V L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1-2):235-246.
[10]  Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
[11]  Li J, Li Y, Wu M, et al. Effectiveness of low-temperature biochar in controlling the release and leaching of herbicides in soil[J]. Plant and Soil, 2013, 370(1-2):333-344.
[12]  Zheng R L, Cai C, Liang J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice(Oryza sativa L.) seedlings[J]. Chemosphere, 2012, 89(7):856-862.
[13]  Peng X, Ye L L, Wang C H, et al. Temperature-and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in Southern China[J]. Soil & Tillage Research, 2011, 112(2):159-166.
[14]  Zhang A, Bian R, Pan G, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127:153-160.
[15]  Zheng R, Chen Z, Cai C, et al. Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil[J]. Bioresources, 2013, 8(4):5965-5982.
[16]  Karhu K, Mattila T, Bergstrom I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity:Results from a short-term pilot field study[J]. Agriculture Ecosystems & Environment, 2011, 140(1):309-313.
[17]  Zhang A, Liu Y, Pan G, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China plain[J]. Plant and Soil, 2012, 351(1-2):263-275.
[18]  Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2):205-212.
[19]  Streubel J D, Collins H P, Garcia-Perez M, et al. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Science Society of America Journal, 2011, 75(4):1402-1413.
[20]  Noguera D, Rondon M, Laossi K R, et al. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils[J]. Soil Biology & Biochemistry, 2010, 42(7):1017-1027.
[21]  张 祥, 王 典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8):979-984. ZHANG Xiang, WANG Dian, JIANG Cun-cang, et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):979-984.
[22]  邓万刚, 吴鹏豹, 赵庆辉, 等. 低量生物质炭对2种热带牧草产量和品质的影响研究初报[J]. 草地学报, 2010, 18(6):844-847. DENG Wan-gang, WU Peng-bao, ZHAO Qing-hui, et al. The effect of biochar on grass yield and quality[J]. Acta Agrestia Sinica, 2010, 18(6):844-847.
[23]  Smider B, Singh B. Agronomic performance of a high ash biochar in two contrasting soils[J]. Agriculture Ecosystems & Environment, 2014, 191(SI):99-107.
[24]  Tammeorg P, Simojoki A, Makela P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture Ecosystems & Environment, 2014, 191(SI):108-116.
[25]  Shie J L, Chang C Y, Chen C S, et al. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies[J]. Bioresource Technology, 2011, 102(12):6735-6741.
[26]  鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:146-227. LU Ru-kun. Soil agricultural chemical analysis method[M]. Beijing:China Agriculture Science and Technique Press, 2000:146-227.
[27]  Hendershot W H, Duquette M. A simple barium chloride method for determining cation exchange capacity and exchangeable cations[J]. Soil Science Society of America Journal, 1986, 50(3):605-608.
[28]  Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical midwestern agricultural soil[J]. Geoderma, 2010, 158(3-4):443-449.
[29]  Githinji L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam[J]. Archives of Agronomy and Soil Science, 2014, 60(4):457-470.
[30]  Basso A S, Miguez F E, Laird D A, et al. Assessing potential of biochar for increasing water-holding capacity of sandy soils[J]. Global Change Biology Bioenergy, 2013, 5(2):132-143.
[31]  Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497.
[32]  Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488.
[33]  Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730.
[34]  Zheng H, Wang Z, Deng X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. Geoderma, 2013, 206:32-39.
[35]  Nelissen V, Rutting T, Huygens D, et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil[J]. Soil Biology & Biochemistry, 2012, 55:20-27.
[36]  Houben D, Evrard L, Sonnet P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed(Brassica napus L.)[J]. Biomass & Bioenergy, 2013, 57:196-204.
[37]  Olmo M, Alburquerque J A, Barrón V, et al. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions[J]. Biology and Fertility of Soils, 2014, 50(8):1177-1187.
[38]  Graber E R, Tsechansky L, Lew B, et al. Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe[J]. European Journal of Soil Science, 2014, 65(1):162-172.
[39]  Ch\'ng H Y, Ahmed O H, Majid N M A. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes[J]. The Scientific World Journal, 2014, 2014:1-6.
[40]  Uchimiya M, Bannon D I, Wartelle L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(7):1798-1809.
[41]  董 智, 李红丽, 任国勇, 等. 黄泛平原风沙化土地种植牧草改良土壤效果研究[J]. 中国草地学报, 2008, 30(3):84-87. DONG Zhi, LI Hong-li, REN Guo-yong, et al. Study on soil amelioration effect of planting grasses in wind-sandy land of Yellow River Floodplain[J]. Chinese Journal of Grassland, 2008, 30(3):84-87.
[42]  邰继承, 张丽妍, 杨恒山. 种植年限对紫花苜蓿栽培草地草产量及土壤氮、磷、钾含量的影响[J]. 草业科学, 2009, 26(12):82-86. TAI Ji-cheng, ZHANG Li-yan, YANG Heng-shan. Effect of different planting years on the yield of alfalfa and content of N, P, K in soil[J]. Pratacultural Science, 2009, 26(12):82-86.
[43]  邰继承, 杨恒山, 张庆国, 等. 种植年限对紫花苜蓿人工草地土壤碳、氮含量及根际土壤固氮力的影响[J]. 土壤通报, 2010, 41(3):603-607. TAI Ji-cheng, YANG Heng-shan, ZHANG Qing-guo, et al. Influence of planting years on nitrogen-fixing capacity of rhizosphere and contents of carbon and nitrogen in artificial pastures of alfalfa[J]. Chinese Journal of Soil Science, 2010, 41(3):603-607.
[44]  杨恒山, 曹敏建, 范 富, 等. 紫花苜蓿生长年限对土壤理化性状的影响[J]. 中国草地学报, 2006, 28(6):29-32. YANG Heng-shan, CAO Min-jian, FAN Fu, et al. Effects of the number of growth years of alfalfa on the physical and chemical properties of soil[J]. Chinese Journal of Grassland, 2006, 28(6):29-32.
[45]  Marschner H, Rohmeld V. Strategies of plants for acquisition of iron[J]. Plant and Soil, 1994, 165:375-388.
[46]  Fox A, Kwapinski W, Griffiths B S, et al. The role of sulfur-and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne[J]. Fems Microbiology Ecology, 2014, 90(1):78-91.
[47]  Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis[J]. Global Change Biology Bioenergy, 2013, 5(2):202-214.
[48]  Whalley W R, Clark L J, Gowing D J G, et al. Does soil strength play a role in wheat yield losses caused by soil drying[J]. Plant and Soil, 2006, 280(1-2):279-290.
[49]  勾芒芒, 屈忠义. 土壤中施用生物炭对番茄根系特征及产量的影响[J]. 生态环境学报, 2013, 22(8):1348-1352. GOU Mang-mang, QU Zhong-yi. Effect of biochar on root distribution and yield of tomato in sandy loam soil[J]. Ecology and Environmental Sciences, 2013, 22(8):1348-1352.

Full-Text

comments powered by Disqus