全部 标题 作者
关键词 摘要


响应面法优化超临界水氧化降解喹啉废水

Keywords: 超临界水氧化,喹啉,响应面法,H2O2,TOC

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用基于中心复合设计(CCD)的响应面分析方法,以H2O2为氧化剂,对超临界水氧化降解喹啉废水的影响因素进行了探讨和分析,考察了温度、压力、停留时间、氧化剂过量倍数对废水降解的影响。在温度380~460℃,压力24~28MPa,停留时间20~60s,氧化剂过量倍数0%~400%的条件下分析了TOC去除率的变化。由Design-Expert7.0软件设计分析了实验数据,得到一个二次响应曲面模型,通过实验对模型进行了验证,结果表明,响应面模型的预测值与实验值吻合较好。在最佳操作点温度441℃,压力25MPa,停留时间60s,氧化剂过量2.48倍的条件下,TOC去除率达到最高值(95.19%)。

References

[1]  单明君,吕艳丽,丛蕾.焦化废水处理技术.北京:化学工业出版社,2007
[2]  王嘉,周涛,任大军,等.喹啉的微波辅助光催化氧化降解研究.环境保护科学,2007,33(2):21-24 Wang J.,Zhou T.,Ren D.J.,et al.Study on microwave assisted photocatalytic oxidation degradation on quinoline.Environmental Protection Science,2007,33(2):21-24(in Chinese)
[3]  Savage P.E.Heterogeneous catalysis in supercritical water.Catalysis Today,2000,62(2):167-173
[4]  Mason R.L.,Gunst R.F.,Hess J.J.Statistical Design and Analysis of Experiments with Applications to Engineering and Science.The United States of America:John Wiley and Sons Publication,2003
[5]  吴彦瑜,周少奇,谭芳慧,等.响应面法优化Fenton处理难降解反渗透垃圾浓缩渗滤液.环境工程学报,2010,4(11):2493-2498 Wu Y.Y.,Zhou S.Q.,Tan F.H.,et al.Optimization of Fenton process for biorecalcitrant concentrated leachate of reverse osmosis(RO)by response surface methodological analysis.Chinese Journal of Environmental Engineering,2010,4(11):2493-2498(in Chinese)
[6]  戴启洲,周明华,雷乐成.响应面法优化湿式氧化处理阳离子红X-GR废水.浙江大学学报(工学版),2006,40(11):1889-1894 Dai Q.Z.,Zhou M.H.,Lei L.C.Optimization of wet air oxidation of cationic red X-GRL wastewater by response surface methodology.Journal of Zhejiang University(Engineering Science),2006,40(11):1889-1894(in Chinese)
[7]  Zhang H.,Choi H.J.Multivariate approach to the Fenton process for the treatment of landfill leachate.Journal of Hazardous Materials,2009,161(2-3):1306-1312
[8]  傅剑锋,武秋立.统计学实验设计分析颗粒状TiO2光催化AB7染料废水.太阳能学报,2008,29(2):152-157 Fu J.F.,Wu Q.L.Statistical designs of experiments for photocatalytic process of Acid Blue 7 dye wastewater by nano TiO2.Acta Energiae Solaris Sinica,2008,29(2):152-157(in Chinese)
[9]  Catalkay E.C.,Kargi F.Advanced oxidation and mineralization of simazine using Fenton reagent.Journal of Hazardous Materials,2009,168(2-3):688-694
[10]  Thomsen A.B.Degradation of quinoline by wet oxidation-kinetic aspects and reaction mechanism.Water Research,1998,32(1):136-146
[11]  Montgomery D.C.,Runger G.C.,Hubele N.F.Engineering Statistics.The United States of America:John Wiley and Sons Inc,2001
[12]  李莉,张智,张赛,等,基于响应面法优化MAP法处理垃圾渗透液工艺的研究.环境工程学报,2010,4(6):1289-1295 Li L.,Zhang Z.,Zhang S.,et al.Study on technological parameters of the treatment of landfill leachate by MAP method using response surface methodology.Chinese Journal of Environmental Engineering,2010,4(6):1289-1295(in Chinese)
[13]  Bermejo M.D.,Cantero F.,Cocero M.J.Supercritical water oxidation of feeds with high ammonia concentrations pilot plant experimental results and modeling.Chemical Engineering Journal,2008,137(3):542-549
[14]  Shin Y.H.,Shin N.C.,Veriansyah B.,et al.Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant.Journal of Hazardous Materials,2009,163(2-3),1142-1147
[15]  Idil A.A.,Asli A.,Tugba O.An optimization and modeling approach for H2O2/UV-C oxidation of a commercial nonionic textile surfactant using central composite design.Journal of Chemical Technology and Biotechnology,2010,85(4):493-501
[16]  Marco S.,Jose A.Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation.Dye and Pigments,2006,71(3):236-244

Full-Text

comments powered by Disqus